
©2018 Prometheus Consulting
Document Revision: Revision: 1

MaduraUtils

User Guide

©2018 Prometheus Consulting
Document Revision: Revision: 1

©2018 Prometheus Consulting
User Guide madura-utils-3.3.4

- (3) -

Table of Contents

1.Change Log... 5

2.References... 6

3.Overview.. 7

4.Locking and Database.. 8
4.1.SimpleLock... 8
4.2.SQLLock... 8
4.3.Other Locking Mechanisms.. 9

5.Two Phase Commit support.. 10

6.Asserts... 11

7.Spring... 12

A.License.. 14

B.Release Notes... 15

©2018 Prometheus Consulting
User Guide madura-utils-3.3.4

- (4) -

©2018 Prometheus Consulting
User Guide madura-utils-3.3.4

- 5 -

1. Change Log

©2018 Prometheus Consulting
User Guide madura-utils-3.3.4

- 6 -

2. References
[1] Spring Framework

[2] slf4j

[3] Apache Licence 2.0

http://www.springframework.org
http://www.slf4j.org
http://www.apache.org/licenses/LICENSE-2.0

©2018 Prometheus Consulting
User Guide madura-utils-3.3.4

- 7 -

3. Overview
The MaduraUtils project is a catch-all project for various miscellaneous features required by other
Madura projects (or anyone else) but which aren't big enough to justify their own project.

• Locking: this provides a factory and template for using
java.util.concurrent.locks.Lock implementations as well as two of those
implementations. We re-interpret the Lock interface here because the original intention
for that interface seems to be more about locking memory objects such as lists and
queues, across threads. This re-interpretation is about pessimistic locks of abstract
items that might be locked across multiple threads and multiple JVMs, depending on the
implementation.

• Parser is a set of parsing tools which can be extended to support a specific grammar
fairly simply.

• Schemaparser is a reader of XSD files which creates an object structure which can be
easily queried for class names and fields etc.

• The spring package is a collection of useful stuff that assists when using Spring
Frameworks.

©2018 Prometheus Consulting
User Guide madura-utils-3.3.4

- 8 -

4. Locking and Database
The Madura Utils project supplies the framework for a locking system, but the implementation of the
locks are your choice.

To take out a lock you use the lock factory which is configured like this:

<bean id="lockFactory"
 class="nz.co.senanque.locking.simple.SimpleLockFactory" />

The lock factory is injected into the relevant objects and called like this:

Lock lock = getLockFactory().getWrappedLock(ObjectSpecificString,
 LockType.WRITE, comment);

The lock is actually a java.util.concurrent.locks.Lock, and you can use it to take out a
lock on the ObjectSpecificString, which can represent any abstraction you can think of. It is helpful to
use a template like this:

LockTemplate lockTemplate = new LockTemplate(lock, new LockAction() {

 public void doAction() {

 // some code that must happen in a lock
 }});
if (!lockTemplate.doAction()) {
 throw new RuntimeException("Failed to get a lock");
}

The template ensures that the lock is released when it is done no matter what happens. There is a
variation that allows a timeout on the internal trylock call. It can accept a single lock as shown, or it
can accept a list of locks which it locks in the order they appear in the list, and unlocks in the reverse
order.

The factory configured earlier delivers a class with an interface called
nz.co.senanque.locking.LockFactory and that is where it can be extended to use any
locking mechanism you like. These are the ones available:

4.1. SimpleLock

This is the example already shown. It uses a memory array to manage the locks so it is not
suitable to lock across different JVMs. This one is mostly used for testing since it needs no extra
configuration. It does expose the lock table with JMX so that you can cancel locks manually on the
fly. Exactly how much this really is remains to be seen.

4.2. SQLLock

This one keeps the locks on a database table so it requires a database and it does work across
JVMs. This is the table definition required (for Oracle):

CREATE TABLE SQL_LOCK
(
 lockName VARCHAR(100) PRIMARY KEY NOT NULL,
 ownerName VARCHAR(100) NOT NULL,
 started VARCHAR(255) NOT NULL,
 comments VARCHAR(255),
 hostAddress VARCHAR(100) NOT NULL
);

©2018 Prometheus Consulting
User Guide madura-utils-3.3.4

- 9 -

If the table is not already there the lock factory will attempt to create it. Two points to note about that:

First, this is a generic table creation script. You might have something more specific needed
for your database. Put your modified script into a file name sql_locks-XXX.sql where
XXX is your database product name (as returned by getDatabaseProductName() from
java.sql.DatabaseMetaData).

The second point is that most DBAs configure production databases so that ordinary users do not
have enough privilege to create tables, in which case you need to get the DBA to run the script
manually.

The Spring configuration looks like this:

<bean id="lockFactory" class="nz.co.senanque.locking.sql.SQLLockFactory">
 <property name="datasource" ref="datasource"/>
 <property name="prefix" value=""/>
 <property name="maxRetries" value="-1"/>
 <property name="sleepTime" value="1000"/>
</bean>

The datasource must be a JDBC datasource and the other properties are optional, with the default
values shown.

The prefix is used when you have multiple JVMs running on the same server (with the same ip
address), setting different prefixes on each allows the lock manager to know which JVM owns which
lock.

The maxRetries and sleepTime defines how many times to keep retrying the lock if we are locked out
(-1 means infinite) and the sleep time is how long to wait between each try in milliseconds.

The SQLLockFactory is exposed to JMX for several operations, notably forcing it to release specific
locks. Details of configuring a JMX in an application is beyond the scope of this document but you
mostly need to just add the following to your Spring context:

<bean id="mbeanServer" class="java.lang.management.ManagementFactory"
 lazy-init="false" factory-method="getPlatformMBeanServer"/>
<context:mbean-export server="mbeanServer"/>

4.3. Other Locking Mechanisms

The obvious one to implement is Hazelcast which supports the
java.util.concurrent.locks.Lock interface already so a simple factory that delivers a
Hazelcast implementation would be easy to build. Terracotta can manage distributed locks as well.

©2018 Prometheus Consulting
User Guide madura-utils-3.3.4

- 10 -

5. Two Phase Commit support
Hibernate requires a support class to enable two phase commits under JTA using Atomikos. The
resulting class is pretty trivial but it enables Spring to get the wiring right. The dependencies for this
are only Hibernate and in this project it is marked as 'provided' in maven so you don't get it if you
don't want it.

©2018 Prometheus Consulting
User Guide madura-utils-3.3.4

- 11 -

6. Asserts
The MaduraAsserts class roughly mimics Junit's asserts but doesn't need the JUnit dependency
in your production code. The asserts take optional format messages and even RuntimeExceptions if
you want.

©2018 Prometheus Consulting
User Guide madura-utils-3.3.4

- 12 -

7. Spring
The PropertiesMerger is for merging two or more properties sources into one.

<context:property-placeholder location="classpath:config.properties" />
<util:properties id="xaProperties1">
 <prop key="url">${database.url.prefix}workflow
${database.url.suffix}</prop>
 <prop key="user">${database.user}</prop>
 <prop key="password">${database.password}</prop>
</util:properties>
<util:properties id="xaProperties2">
 <prop key="pinGlobalTxToPhysicalConnection">true</prop>
</util:properties>
<bean id="xaProperties" class="nz.co.senanque.spring.PropertiesMerger">
 <property name="list">
 <list>
 <ref bean="xaProperties1"/>
 <ref bean="xaProperties2"/>
 </list>
 </property>
</bean>

The resulting properties bean: xaProperties can be injected into some bean that requires the
complete list of properties. It is most helpful when you are configuring a datasource and you need to
add extra properties to the basic list. It is easy enough to provide different values as shown above,
but to provide extra can be done like this:

<context:property-placeholder location="classpath:config.properties" />
<util:properties id="xaProperties1">
 <prop key="url">${database.url.prefix}workflow
${database.url.suffix}</prop>
 <prop key="user">${database.user}</prop>
 <prop key="password">${database.password}</prop>
</util:properties>
<util:properties id="xaProperties2" location="classpath:xa-
${database.type}.properties"/>
<bean id="xaProperties" class="nz.co.senanque.spring.PropertiesMerger">
 <property name="list">
 <list>
 <ref bean="xaProperties1"/>
 <ref bean="xaProperties2"/>
 </list>
 </property>
</bean>

In this case we have moved the xaProperties2 properties to an external file. and we qualify it with
database.type. We already loaded config.properties and that looks like this:

Use these values for a MYSQL database on localhost
database.dialect=org.hibernate.dialect.MySQL57InnoDBDialect
database.datasource.class=com.mysql.jdbc.jdbc2.optional.MysqlXADataSource
database.url.prefix=jdbc:mysql://localhost:3306/
database.url.suffix=?autoReconnect=true&useSSL=false
database.user=workflow
database.password=workflow
database.type=mysql

©2018 Prometheus Consulting
User Guide madura-utils-3.3.4

- 13 -

As long as we provide a file names xa-mysql.properties this will work. We need to provide a
similar file for each database variation we hope to use. We can move some of these properties to the
appropriate xa file, but the goal is to have just one file that needs to be edited so don't move the user,
password or url properties because those might need to be changed regardless of what database
platform is slected.

©2018 Prometheus Consulting
User Guide madura-utils-3.3.4

- 14 -

A. License
The code specific to MaduraUtils is licensed under the Apache Licence 2.0 [3].

The dependent products have compatible licenses as specified in their pom files.

http://www.apache.org/licenses/LICENSE-2.0

©2018 Prometheus Consulting
User Guide madura-utils-3.3.4

- 15 -

B. Release Notes
3.3.0

Added Travis CI.

3.2.0

Added JMX.

Added PropertiesMerger.

3.0.1

Improved interface to schema parser. Specifically added a traverse(visitor)
pattern and supporting classes to generate an example jdom document
from the XSD.

3.0.0

Released to align version with Madura Objects.

1.0.0

Added asserts.

Some minor formatting.

0.0.3

Adjusted parser behaviour to support Eclipse plugin.

0.0.2

Upgraded Spring dependency.

0.1

Initial version.

	1. Change Log
	2. References
	3. Overview
	4. Locking and Database
	4.1. SimpleLock
	4.2. SQLLock
	4.3. Other Locking Mechanisms

	5. Two Phase Commit support
	6. Asserts
	7. Spring
	A. License
	B. Release Notes

