MaduraRules

User Guide

©2016 Prometheus Consulting
Documen t Revision: Revision: 1

©2016 Prometheus Consulting
Document Revision: Revision: 1

Table of Contents

O3 g =T [o L= o Yo [P RRRPPPPPP 5
P L =T =] T of =T SRR 6
G I =T O] s o3 =7 o S PP 7
A.The RUIE ENQINE. .ttt e e e e e e e e e eees 8
SWIIING RUIES ... e e e e as 9
5.1.SIMPIE RUIES......iieee e e e e e e e e eeeaaeees 9
LA o U od 1 0] o TP 10
5.2.1.Internal Functions and OPerators...........couuveeuuiiiiiiiiiieee e eeeeeeeeeeeiennenns 10
5.2.2.EXternal FUNCHONS.ccooiiiiiiiiiieeeeeee e 11
5.3.DeCiSION TabIES......ccooi s 11
5.4 CONSTANTS. ...t e e e e e e e e e eea e e aaeee 12
6.DEPIOYING RUIBS....ee e 14
6.1.BUIIdING WItN ANL.....oii e e e e e e e eaaeeaee 14
6.2.BUIldiNg WIth MaVEN........ccooiiiiiiiiiiiie e eeeaaeees 14
6.3.Configuring Your APPICALION...........coeiuiiiiiiiiiiie e 16

O = Tt (0] 11 PSP 16
7.Designing Rule Based SYSTEMS.......uuuuiiiiiiiiieieeeeeeeeeeeeeetitie e eeeeeeeenes 18
8.Directed QUESTIONING . .uuuuuuiiiiiii ettt e e e e e e e e e e e e eeeas 21
0. THE RUIES AP . e e e e e e e e e ar s 24
ALECHPSE PlUGIN. ot a e e e e 25
= 3 I Lo = Lo = PP PURTTR 28
CLREIEASE NOTES. .. .ueiiiiiie et e e e e e e e e e eeeeeseeennnaas 29

©2016 Prometheus Consulting
User Guide madura-rules-3.0.1

(3)

©2016 Prometheus Consulting
User Guide madura-rules-3.0.1

-(4) -

1. Change Log
I e

rogerparkinson 2016-03-24 reworked the readme files

rogerparkinson 2015-12-07 Documented resource copying

rogerparkinson 2015-11-21 Revised properties file handling to auto configure
rogerparkinson 2015-11-16 Adjusted the description of resource bundles configuration
rogerparkinson 2015-08-27 moved project to the madura objects tree

©2016 Prometheus Consulting
User Guide madura-rules-3.0.1
-5-

2. References

[1] Spring Framework

[2] JAXB Plugins

[3] JAXB

[4] Hyperjaxb3

[5] JSR-303

[6] MaduraObjects

[7] GPL V3 licence

[8] Commercial Madura Rules Licence 1.0
[9] Apache Licence V2.0

[10] eclipse
[11] maduraeditors

[12] Madura Objects

©2016 Prometheus Consulting
User Guide madura-rules-3.0.1
-6 -

http://www.springframework.org
http://weblogs.java.net/blog/kohsuke/archive/2005/06/writing_a_plugi.html
https://jaxb.dev.java.net/
https://hyperjaxb3.dev.java.net/
http://blog.jteam.nl/2009/08/04/bean-validation-integrating-jsr-303-with-spring/
www.madurasoftware.com/home/madura-objects
http://www.gnu.org/licenses/gpl-3.0.html
http://www.madurasoftware.com/home/madura-rules/commercially-licensed-version-of-madura-rules/commercial-madura-rules-license-version-1
http://www.apache.org/licenses/LICENSE-2.0
http://www.eclipse.org
https://github.com/RogerParkinson/maduraeditors
https://github.com/RogerParkinson/madura-objects-parent/tree/master/madura-objects

3. The Concept

Madura Rules is a rules engine designed to work closely with Madura Objects[12]. Where Madura
Objects provides a transparent validation and metadata facility, Madura Rules is a plugin to Madura
Objects that extends it to provide cross-field validation, dynamic metadata and dynamic data
generation.

Let's look at a real scenario. You have an object called Customer and to that is linked some Address
objects and some Invoice objects. These are all just simple Java beans with getters and setters.
Well, they look like that at first. You actually defined them using an XSD file and generated the Java
objects using JAXB[3]. Even better you have used the HyperJAXB3[4] and Madura Objects plugins to
JAXB to add some extra hooks to those objects. You did not have to write the objects, you just had to
define them in an XSD file.

So far this gives you the following features:

» The objects can be serialised to/from XML which is really handy if they need to be passed
to PDF tools like FOP, and also useful for web services.

» The objects can be saved and fetched to a database with JPA.

* The objects will self validate. If you attempt to set a value that is incorrect they will throw
an exception and the value will not be kept. For example you can set a range on a
numeric value and this will automatically be checked.

e You can query the objects for metadata information, specifically for choices available.

If you add Madura Rules to this mix then you extend the validation to cross-field validations, as well
as rules to manipulate the metadata. The rules operate totally transparently, except when they throw
violation exceptions. All your applications see is a set of Java objects (POJOs). The rules are also
able to manipulate metadata. For example they can eliminate some of the available options, set fields
to inactive and active, or read only or required.

Each of the generated Java classes therefore exposes an interface for fetching this metadata. So
your application can generate a drop-down list of the currently available options, or disable a field if it
has been switched to inactive.

The rules are able to generate new data, for example deriving a discount rate based on a customer
type, channel and current sale details.

©2016 Prometheus Consulting
User Guide madura-rules-3.0.1
-7-

https://github.com/RogerParkinson/madura-objects-parent/tree/master/madura-objects
https://jaxb.dev.java.net/
https://hyperjaxb3.dev.java.net/

4. The Rule Engine

Rules are just small pieces of code, usually conditional code, that can run independently. A simple
example of a rule is 'if the customer type of this customer is A then set his business type to AG'. This
needs to be translated into a syntax that the rules parser understands but for now notice that this is
just a statement that we always want to hold true.

While the customer type has no value the rule can do nothing, it does not apply. Similarly if the
customer type is set to B the rule cannot run, it still does not apply to the situation. But the moment
customer type is set to A then the rule fires automatically and the business type is set to AG. The
application code doesn't have to do anything to make this happen, it just has to set the customer type
value on the object.

If the value of customer type is later changed to something else, ie not A, then the rule must be
‘'unfired'. That means that the values derived from it have to be unset, so the business type must be
cleared, and this must happen automatically too.

Now imagine that there are many rules and that the action of one rule can cause other rules to fire,
and that unfiring a rule can cause those rules to unfire as well. This is why we use a specialised
engine to manage the rules.

It is important to remember that the rules engine decides what rules to fire and what order to fire them
in. It is a common mistake to try to trick the engine into firing the rules in a particular order. This is not
necessary. The rules are atomic and the engine can work out the interrelationships more easily than
you can yourself.

What happens when there is already a value for the business type? If our example rule fires it will
attempt to set a new value. If the new value is the same as the old value then nothing interesting
happens. But if it is different then we have a problem. The problem is inconsistent data. The operator
may have already given a value for the business type and that value does not work for the customer
type they later gave. In this situation the rules engine throws an exception. The result of the exception
is that the last value the user attempted to set is rejected and any values we derived from it are rolled
back, leaving the session state as it was before.

Keeping the session state correct, even if it may still be incomplete, is part of the 'truth maintenance'
system the rules engine implements. The other part is that when the rules can derive a value using
what has already been set then this automatically happens.

To use Madura Rules we first assume you use Madura Objects already. So you have an XSD that
you used to generate your business objects and these are now Java classes. If you want you could
hand-annotate your Java classes but that is harder and gives no extra benefits. You want to do this
the easy way, right?
The process of adding rules to your application requires the following steps which are detailed in later
sections:
* Write the rules. This involves editing a text file that holds the rules. You can have multiple
files if you want. There is an Eclipse Plugin to help you with syntax etc A
* Optionally define any external functions your rules require. It is likely you won't need any
external functions.

* Use the XJR maven plugin or ant task to generate Java from the rules file(s). You could
write this Java by hand but it would be boring and hard to get the cross references right.

e Optionally define a file to hold your decision tables and constants.

* Adjust your configuration to make the generated Java visible to the engine. Various
configuration approaches are discussed in 4

Notice that you did not have to change your application code. You can add more rules and change
existing ones without having to make your application code aware of any changes at all. You can
dynamically modify entries in the decision tables without even having to rebuild your application.

©2016 Prometheus Consulting
User Guide madura-rules-3.0.1
-8-

5. Writing Rules

5.1. Simple Rules

There are three types of rules:
e Rule: These are the classic if/ithen style of rule.

» Constraint: A condition that must be either true or not yet evaluated. If data is presented
that makes this condition return false then the data is rejected.

* Formula: A simple algebraic formula which sets a value.
The syntax for these is very like Java. This is deliberate.
Best to start with an example:

formul a: Custonmer "Count Itens in |ist"

{

i nvoi ceCount = count (i nvoi ces);

}

This is the simplest kind of rule and consists mostly of one algebraic expression. If there is enough
information to evaluate the expression the rule will fire and set the resulting value.

The Cust oner is the scope. There is a Customer class defined and any fields referenced in this rule
are on some Customer object. There is also a message or comment associated with the rule. The
formula in this case includes a function and functions are discussed later.

rul e: Customer "Determ ne business from custoner Type"
{
if (customerType == "A") {
busi ness = | ndustryType. AG
}
}

This is the classic if/then rule. Like the formula it has a scope and a message. The body of the rule
has a condition and one or more actions, ie formulae, to perform if the rule can be fired.

The rule engine detects any Customer object whose customerType field gets set to A and fires the
rule automatically.

constraint: Custoner "check the count: {0}" [onelnvoice.amunt] {
I' (i nvoi ceCount > 2L);

}

A constraint also has a scope and a message. The body of the rule is a single condition. It can be a
complex condition but it is just one condition. In this case it is saying the count of invoices must not
be greater than 2. If we try to change the count to something greater than 2 then the constraint will
fire and deliver an exception.

Each kind of rule has a message. The message is used if the rule attempts to fire but cannot and
it has to deliver an exception. The message text ends up in the exception. Madura Rules actually
makes use of Java's MessageFormat facility for this. Although you put a readable message into
the rules file the rule generator takes your message and puts it into a properties file which ends up
looking something like this:

nz. co. senanque. obj ecttestrul es. RL=Count Itens in |ist
nz. co. senanque. obj ectt est rul es. R2=Det er mi ne custoner Type from nane
nz. co. senanque. obj ectt est rul es. R3=check the count: {0}

©2016 Prometheus Consulting
User Guide madura-rules-3.0.1
-9-

You are then free to translate this file into other languages for different locales. The exception
generator will look up the key to get the actual string whenever it generates an exception.

Also note the use of arguments in the message strings. For R3 we specified a message with an
argument. The arguments for the message are specified in the rules file just after the message.
There is an optional list of fields comma separated and surrounded by brackets.

In our example we saw:
constraint: Customer "check the count: {0}" [onelnvoice. amount]

When the message is generated the onel nvoi ce. anount field is used as the argument. In this
case onel nvoi ce is a field that points to an Invoice object and that has an amount field on it. You
can refer to fields of owned objects but no further level of indirection is supported. This encourages
encapsulation.

The general operation of the engine is that values are set from outside. The engine detects which
rules ought to be fired because of those values and fires them. That, in turn, sets other values which
causes other rules to fire etc. When all the rules that ought to fire are done then control is returned to
the calling application (which doesn't actually know it called any rules).

If a constraint fails or if one of the other rule types has a problem with the data at any point the rule
that detected the problem will throw an exception containing the message. The engine will roll back
all changes, ensuring the current state is always valid and deliver the exception to the caller.

Apart from constraints failing there can be other reasons for rules to fail. For example if we set
customerType to A but we had already set the business to something other than IndustryType.AG.
We also fail if we have derived a value from the rules and then the caller attempts to set it directly.

If a value set by the caller changes then the rules are unfired and, possibly, refired to accommodate
the change.

5.2. Functions

5.2.1. Internal Functions and Operators

There are many built in functions that you can use in your rules. These handle lists, dates and
conversions. The conversion functions are often inserted automatically by the rules parser when it
generates the Java form of the rule.

« sum(list.float) sums all the properties in a list eg total = sum(invoices.amount)

e count(list) counts all the properties in a list eg count = count(invoices)

« anyTrue(list) tests if any value is true eg x = anyTrue(invoices.flag)

» countTrue(list) counts all the true properties in a list eg count = countTrue(invoices.flag)
» allTrue(list) tests if all the properties in a list are true eg x = allTrue(invoices.flag)

» unique(list) tests if every item in a list is unique eg x = unique(invoices)

« match(list,list) tests if two lists match eg x = match(invoices,otherinvoices)

e yearsSince(date) number of years elapsed since the date eg years =
yearsSince(dateOfBirth)

* monthsSince(date) number of months elapsed since the date eg months =
monthsSince(dateOfBirth)

+ format(f,value) formats a string using a resource string (f) and a value. For example
format ("format. description”, amount) where format. descri pti on refers to
an entry in a resource file: f or mat . descri pti on=t he amount {0} was set and
the amount is a field on the object.

» addDays(date,days) eg date = addDays(dateOfBirth)

e subtractDays(date,days) eg date = subtractDays(dateOfBirth)
« toNumber(any) converts a value to a number if possible

» toLong(any) converts a value to a long

» toDate(any) converts a value (inevitably a String) to a date

» toString(date) convert a value to a String

©2016 Prometheus Consulting
User Guide madura-rules-3.0.1
-10 -

» isNotKnown(any param) returns true if this parameter was explicitly set to Not Known.
See 6.

Similar to functions are the operators. The usual group are available:
+ - NYHEKR || N === >= < >

These mean the same as they do in Java, with the exception of '** which invokes the pow() function,
eg 2"3is 8.

Also note that dates and strings can be compared with the compare operators instead of calling a
method.

5.2.2. External Functions
You can add your own functions if you want to. Here is what you do.
First, write your function as a static method on some Java class. It should look something like this:

@-unction

public static Doubl e conbi ne(Nunber a, Nunber b) {
return a.doubl evVal ue() + b.doubl eval ue();

}

Note that the function is annotated with nz. co. senanque. r ul es. annot ati ons. Functi on and
that the arguments are Number rather than Double or Long or double or long. This keeps the function
flexible enough to handle multiple data types. You really only want to pass simple arguments such
as:

* Number
e String

« Boolean
« Date

Now you can write rules that use the function. The syntax is the same as for internal functions. There
is one more step to this which is covered in 4 and you probably want to put external functions into
their own jar file separate from your main project, though this depends on how you want to deploy.

5.3. Decision Tables

The Decision Table feature is a way to represent a large number of relationships which could be
done with a lot of if/then rules but it would be tedious to write and maintain.

You define an XML structure that looks like this:

<Deci si onTabl e nane="busi ness- cust oner Type" type="Customer"
message="nz. co. senanque. newr ul es. deci si ont abl e. busi ness- cust oner Type" >
<Col utTmNanes>
<Col umNane aut oAssi gn="true" >busi ness</ Col umNane>
<Col umNane>cust oner Type</ Col unmNane>
</ Col unmmNanes>
<Rows>
<Row>
<Col um>AG</ Col um><Col umm>A</ Col umm>
</ Row>
<Row>
<Col um>AG</ Col um><Col umm>B</ Col unm>
</ Row>
<Row>
<Col um>FI| SH</ Col utmm><Col utmm>B</ Col unm>
</ Row>
<Row>
<Col um>FI NANCE</ Col utmm><Col uim>C</ Col umrm>

©2016 Prometheus Consulting
User Guide madura-rules-3.0.1
-11 -

</ Row>
<Row>
<Col umm>FI NANCE</ Col uimm><Col utm>D</ Col urm>
</ Row>
<Row>
<Col umm>FI NANCE</ Col uimm><Col utm>E</ Col um>
</ Row>
<Row>
<Col umm>FI NANCE</ Col uimm><Col utm>F</ Col urm>
</ Row>
</ Rows>
</ Deci si onTabl e>

The decision table has a hame, a relevant object (Customer in this case) which is the equivalent of
the scope in the other rules. There is also a message identifier which is delivered as an error if an
attempt to set an incorrect value is made.

The column names refer to fields in the Customer object.

Below that are rows and columns. Each row specifies a valid combination. So if we set the business
to B then the only valid values for business are AG and FISH. If your application examines the
metadata for business, say to create a drop down list, then it will give only those values.

If we set the customerType to A then there is only one valid value for business and, because we set
the autoAssign attribute in the columnName, then that value will actually be set.

We can, of course, decide to set the business value first and have it decide what options are
available for customerType instead. And we can have more than two columns.

Your decision table data comes from the XML file by default, but you can specify

a factory to deliver the data. That factory is a Java class you write that implements

nz. co. senanque. rul es. factori es. Deci si onTabl eFact ory. Your factory will be called
when the rules load up, not for every invocation of the decision table.

If you do use a factory to deliver the data you should define a workable data set in the XML anyway

and use it for unit testing. That way your unit tests will not be dependent on external data sources. If
no factory is configured the XML will be used and, if a factory is configured the factory will be used in
preference.

5.4. Constants

Sometimes it is convenient to use soft constants in your rules like this:

rul e: Custoner "Determ ne business from custoner Type" {
if (custonerType == ${xyz}) {
busi ness = I ndustryType. AG
}
}

To find the value of xyz the engine will look in an XML document that defines the constant like this:

<Madur aVal i dat or >
<Const ant s>
<Const ant nane="xyz">aaaab</ Const ant >
</ Const ant s>
</ Madur aVval i dat or >

The XML can be changed without having to change the rules, which increases your deployment
options. Like the decision tables these constants can be delivered from factories you supply, so the
value of xyz might be determined by some Java code you write that runs automatically when the
rules load. Note that the factory does not run after that and the value, once established, remains in
use as a constant.

©2016 Prometheus Consulting
User Guide madura-rules-3.0.1
-12 -

But you need to define the constant in the XML file regardless and it is convenient to use the value
from there when unit testing.

©2016 Prometheus Consulting
User Guide madura-rules-3.0.1
-13 -

6. Deploying Rules

This assumes you are deploying a Java application and that you are using Spring to wire it together.
There are alternatives but the examples here use Spring. We also assume you have set up your
project in line with the description in Madura Objects. So you have already defined your objects in
an XSD file and you already have your configuration figured out for that. All we need to do now is
describe what else you have to do.

6.1. Building with Ant

The Ant plugin is no longer maintained. It probably works but we no longer test
it since we moved out builds to maven.

1

First you need to generate your rules. This is done using an Ant task called XJR. Define the Ant task
like this:

<taskdef nanme="xjr" classnane="nz.co.senanque. generate. XJR'>
<cl asspat h>
<fileset dir="${basedir}/tenp/lib" includes="*.jar" />
<pat hel ement | ocati on="${basedir}/bin"/>
</ cl asspat h>
</t askdef >

This assumes you have the madura-rules.jar file in temp/lib. The /bin entry is optional but you might
want this if you have external function classes. The xjr task needs to have those on its class path.
Now to invoke the task you do this

<xjr destdir="${basedir}/generated"
packageName="nz. co. senanque. obj ecttestrul es"
rul es="${basedir}/test/nz/col/ senanque/ rul esparser/ Cbj ect Test . t xt"
schema="${ basedi r}/ sandbox. xsd"
xsdpackageNanme="nz. co. senanque. madur a. sandbox" >
<cl assRef er ence name="nz. co. senanque. sandbox. Sanpl eExt er nal Functi ons"/ >
</xjr>

There are several arguments specified here:

» destdir is where the resulting Java files will be generated. They will be put into the
package specified in packageName.

» rules specifies the file containing your rules.

» schema specifies the xsd file.

« xsdpackageName is only needed if your xsd package is different from your rules
packagename.

e The optional classReference entry specifies a class containing your external functions as
described in 5.2.2. If you have multiple classes then add multiple classReference entries.

Once this task has run you will need to compile the generated Java using the usual javac task
supplied with Ant.

6.2. Building with Maven

The one extra thing you have to do with Maven is generate the rules from your rules file. There is a
Maven plugin to do this and it is invoked by adding this to your pom file

<pl ugi n>
<gr oupl d>nz. co. senanque</ gr oupl d>
<artifactld>madura-rul es-maven-pl ugi n</artifactld>
<versi on>1. 0</versi on>
<executions>

©2016 Prometheus Consulting
User Guide madura-rules-3.0.1
-14 -

<executi on>
<goal s>
<goal >xj r </ goal >
</ goal s>
<confi gurati on>
<target Di rect ory>t arget/ gener at ed- sources/ xj c</
targetDirectory>
<rul es>Pi zzaOr der Rul es. t xt </ rul es>
<schema>Pi zzaOr der . xsd</ schenma>
<packageNanme>nz. co. senanque. madur a. sandbox</ packageNane>
<ext er nal Functi onC asses>
<par anPnz. co. senanque. pi zzaor der. ext er nal s. MyExt er nal Funct i ons</
par am>
</ ext ernal Functi ond asses>
</ configuration>
</ executi on>
</ executi ons>
<dependenci es>
<dependency>
<gr oupl d>nz. co. senanque</ gr oupl d>
<artifactld>nadura-objects-test-factories</artifactld>
<versi on>${ proj ect. versi on} </ versi on>
</ dependency>
</ dependenci es>
</ pl ugi n>

There are several arguments specified on the xjr plugin:

» targetDirectory is where the resulting Java files will be generated. They will be put into the
package specified in packageName.

» rules specifies the file containing your rules.
e schema specifies the xsd file.

» xsdpackageName is only needed if your xsd package is different from your rules
packagename.

» The optional externalFunctionClasses entry specifies a class containing your external
functions as described in 5.2.2. If you have multiple classes then add multiple param
entries.

If you use external functions you will need to put them into a separate project that generates its own
jar file deployed to maven, then add that dependency to the plugin (as well as your project). The
reason for adding them into a separate project is to ensure they are added to the plugin's classpath
for use when it generates the rules.

Both the schema file and the rules file are always in the directory sr ¢/ nai n/ r esour ces.

The rules generation plugin will put the generated java and a properties file into the targetDirectory.
To get the properties file copied into your application you need to specify it in the resources (in the
build tag):

<r esour ces>
<resour ce>
<di rectory>src/ mai n/ resources</directory>
<filtering>true</filtering>
</ resource>
<resour ce>
<di rect ory>gener at ed- sour ces/ xj c</ directory>
<i ncl udes>
<i nclude>**/*_ properties</include>
<include>**/*. xm </i ncl ude>
</incl udes>
<filtering>false</filtering>

©2016 Prometheus Consulting
User Guide madura-rules-3.0.1
-15 -

</ resource>
</ resources>

The first entry ensures maven does its default copy of resources in Sr ¢/ mai n/ r esour ces and the
second tells it to also get any resources from the generated sources directory.

6.3. Configuring Your Application

First take a look at the configuration for Madura Objects which Madura Rules depends on. You only
need to add a few small extras to that to include Madura Rules. Recall that the configuration is mostly
done by setting properties. These are the extra properties you can use for Madura Rules:

nz. co. senanque. rul es. Rul esPl ugi n. t oday=(t oday)
nz. co. senanque. rul es. Rul esPl ugi n. deci si onTabl eDocunent =cl asspat h: choi ces. xm
nz. co. senanque. rul es. Rul esPl ugi n. const ant sDocunent =cl asspat h: choi ces. xni

But notice they all have defaults, so you can leave them all out if you want.

The first one is used if you want to force the value of today's date to specific value, which is handy
when you have unit tests that depend on that value. Without it you can find your tests stop working as
the date advances if they test, for exaple, that some fixed date is after the current date.

The other two allow you to split the decision table and constants information in their own files. Most of
the time you will be happy to keep them in one file so you can ignore these.

The only other consideration is that your generated rules need to be in a scanned package.

How you do that depends on the configuration option you have chosen. Either add the

package to your Spring XML file, your @Configuration file or, if using CDI, add it to your

nz. co. senangue. val i dat i onengi ne. net adat a. Annot at i onsMet adat aFact ory. packages
property. Remember it can take a comma-separated list of packages.

That is all there is to it.

6.4. Factories

This is an example of what the choi ces. xm file referred to earlier looks like:

<Madur aVal i dat or xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : noNanespaceSchenaLocati on="https://repol. maven. or g/ maven2/ nz/ co/
senanque/ madur a- obj ect s/ 2. 2. 4/ madur a- obj ect s- 2. 2. 4-choi ces. xsd" >
<Choi ceLi st nane="cust oner Type" >
<Choi ce nane="a">A</ Choi ce>
<Choi ce nane="e" >E</ Choi ce>
<Choi ce nane="f">F</ Choi ce>
</ Choi celi st >
<Deci si onTabl e nane="nyDeci si onTabl e" scope="Pi zza"
nmessage="nz. co. senanque. pi zzaor der. rul es. deci si onTabl e" >
<Col utmmNanes>
<Col utTmNane aut oAssi gn="f al se" >t oppi ng</ Col uimNane>
<Col utmmNane>si ze</ Col uimNane>
</ Col umNanes>
<Rows>
<Row>
<Col um>Seaf ood</ Col utm><Col utm>Smal | </ Col unm>
</ Row>
<Row>
<Col um>G eek</ Col um><Col um>Lar ge</ Col unm>
</ Row>
</ Rows>
</ Deci si onTabl e>
<Const ant s>
<Const ant nane="xyz">aaaab</ Const ant >

©2016 Prometheus Consulting
User Guide madura-rules-3.0.1
-16 -

</ Const ant s>
</ Madur aVal i dat or >

In this case we have combined the choice lists used by Madura Objects with a decision table and

a constant used by Madura Rules. Normally you would have multiple choice lists, multiple decision
tables and multiple constants but this example shows one of each to keep it simple. In Madura
Objects you can supply any choice list using a factory instead of the XML and the mechanisms for
defining decision tables and constants factories is the same as that.

For a decision table define a class that implements

nz. co. senanque. rul es. factori es. Deci si onTabl eFact ory and define it as a bean with
the name of the decision table from the XML file eg myDeci si onTabl e. Because the name of the
decision table is passed to the factory the factory itself might be coded to handle more than one
table. Your choice. But you do need to define it as multiple beans.

For a constant factory define a class that implements

nz. co. senanque. rul es. fact ori es. Const ant Fact ory and define it as a bean with the name
of the constant from the XML file eg Xyz. Because the name of the constant is passed to the factory
the factory itself might be coded to handle more than one table. Your choice.

As with the choice list factory in Madura Objects these factories need to be in a scanned package.

©2016 Prometheus Consulting
User Guide madura-rules-3.0.1
-17 -

7. Designing Rule Based Systems

To do this properly you have to think a little differently to conventional applications. We use what is
best described as a delegating anemic data model, which is like an anemic data model but with a bit
on the bottom.

{ Application code Application code Application code ‘

A3 A v

|
Y

\\ S — 3
d Generates
Xs! Business Objects <. (“ValidationEngine

-

rul L

Generates
Business Rules

Figure (1) Architecture

Figure (1) shows the concept. The business objects are all available to the various applications that
need to use them. There might also be some support code as well such as DAOs and helpers which
is not shown here. The important part is that all the applications will use the same objects.

Those objects must, therefore, be quite free of application-specific code. This is one reason why the
Madura approach is to generate them with JAXB. You can inject code using JAXB but it has to be
done very consistently.

Using Madura we smarten up the objects by adding validation rules and (optionally) more complex
rules. Validation rules are obvious enough and it is easy to see that the objects would want the same
validation rules regardless of the application code that uses those objects.

It is important to notice that the application code never references the rules underlying the objects.
This means you can change those rules without having to change any application code, and that
means you can manage keeping the objects consistent across multiple applications as shown.

Just to make this clear consider the alternatives. The three applications are, for example, a web
application, a web services application and a swing application. All of them create a Customer object
and load various fields in it such as name, address, etc. These fields all need the same validation and
these three applications would need to implement validation specific to their technologies. Except that
they don't now because the validation rules handle it for them. All they see is an exception when they
get something wrong. JSR-303[5] does this as well, but the three applications would have to call a
JSR-303 provider to find out if the data is valid. With Madura this happens transparently.

By adding Madura Rules we can have more complex rules which handle cross-field validation. We
can also have rules that derive values for other fields. For example if we are building up an order
from several order items with different prices we might figure the total using rules. Adding another
item or changing its value will automatically update the total. All three applications can use this logic
without change. If you then need to add a tax calculation to figuring the total you can do this without
having to work the code into the three applications. It will be transparent and consistent.

©2016 Prometheus Consulting
User Guide madura-rules-3.0.1
-18 -

http://blog.jteam.nl/2009/08/04/bean-validation-integrating-jsr-303-with-spring/

This means that there are a lot of things you might expect to have to code into the applications that
no longer need to be there. It also means that some of the things you still do need in the applications
can be done differently. Consider these examples:

* We already discussed the rule that figures the total of the invoice. So all you need
in the application is some way to display the field containing the total. You do not
need any code that adds it up. You still need code to add order items to the order, or
whatever equivalent your application needs. Creating and removing objects is always an
application operation, so the application creates the order item and adds it to the order.
But then the rules kick in and adds the order item amount to the total. If the order item
amount changes (either because the application set it or because another rule set it
because of something else) then the total will be refigured automatically.

» Setting a value in a field on the order item might cause the price of that order item to be
set. For example if we have a size field on the order item then different sizes of this item
might have different prices. Once the price is determined by the rules then the total will be
revised. All the application had to do was pick the size.

* The size might also influence the availability of other fields. Perhaps size=Medium is
only compatible with two of the five available flavours. If the application sets Medium
then it must set one of those compatible flavours. If it sets one of the others you get an
exception. Again there is no application code needed for this.

e You might want to present the current list of available values for flavour, though and that
does need application code. Building a list of available values for a Swing application
is totally different from building a Select box in a web application and in a web service
application you probably don't do this because you have all the picks in the request. Any
of these applications can query the Madura Objects API to find the available values and
implement whatever makes sense to that technology. But what the application code did
not have to do is figure out which available values there are. It just calls for the current
list, whatever it is. Again, if you want to change the size/flavour relationships you don't
have to change the application code. It is actually normal for those kinds of relationships
to be driven by XML files, database tables or similar.

* What if we want to enable some user function using the rules? For example we might
want to signal that this customer needs a credit check and that might be signalled by
the order being over some critical value. We might want the user to see a credit check
button enabled if that happens. But, clearly, that would have the rules tied to the Ul and
we never do that. What we do instead is set a boolean field in the Customer to true and
tie the button enable to that field. Yes, you need application code to query the boolean
and enable the button, but the application code does not have to decide what triggers the
enable, it only knows about the boolean. Naturally you use the same field in the Swing
application and the Web application. Notice that we did not put anything specific about
the Ul in the objects or the rules. But we did put enough information in there for different
Ul technologies to do what they need to.

At this point you may have noticed that the collection of objects and their fields are always in a valid
State. The rules enforce this. Attempts to set invalid values (anything which violates the rules) results
in the values being rejected and an exception thrown. The State remains valid although it may be
incomplete.

This incompleteness is what the ‘required’ attribute is for. Some fields are required and some are not.
Some may be dynamically made required by rules. An application can easily check for fields that are
required but not completed and adjust the Ul appropriately. Usually this means disabling the submit
button.

There are some traps for the unwary in all this. Here they are and how to avoid them.

e Because there are things happening under the covers you can unwittingly strike
performance problems unless you take some care. Be aware that every business object
you bind into a session has an overhead. There are rules to fire and monitoring objects
created to manage every field in the business objects. So, depending on your hardware
you will probably manage hundreds of objects okay. But when it grows to thousands of
objects you may strike problems.

©2016 Prometheus Consulting
User Guide madura-rules-3.0.1
-19 -

» Performance again: adding a business object to a collection causes a bind, of course.
Removing one causes an unbind. Binding and unbinding are expensive operations so
don't bind, unbind and rebind things over and over.

» Java collections like to use the equals() method on the object when locating the target of
a remove(). If you have two objects in the collection that have the same values in all their
fields then you may find it removes the wrong object. This is not a Madura problem, it is
more of a Java issue. But it is confusing so watch for it. Mostly just make sure you have a
unique field in each object.

* You should assume that any rule might fire at any time, and that it might fire multiple
times in a session as the user sets values, changes values etc. Beware of this if you
decide to implement a custom operator. Custom operators should not perform expensive
operations such as calling external web services. Probably database queries are okay as
long as you enable caching.

We have already mentioned that the decision tables can be updated from any data source you
want to use, this can be done while the application is running. The other rules are not so dynamic
because they require Java generation. However the most flexible way to deploy rules into a running
application is to use Madura Bundles.

Madura Bundles allows you to build a small jar file containing Java classes and resources and
dynamically deploy it to a running application. The details are out of scope of this document, but this
approach would permit you to hold a consistent set of rules, including decision tables, into a jar file
and deploy them. You can arrange for existing sessions to continue using the rules they started with
and new ones pick up the new rules.

The rules sometimes need intermediate values, for the same reason procedural code does. But

you do not necessarily want those variables in your objects. As mentioned in the Madura Object
documentation, these objects are HyperJAXB objects, which means they can be serialized to a
database using JPA or to XML using JAXB. You probably do not want to include serialization of those
intermediate fields. The answer is quite simple and delivered from HyperJAXB rather than Madura.
Use the | gnor ed annotation like this:

<el enent name="wei ght" type="doubl e">
<xsd: annot at i on>

<xsd: appi nf 0>

<annox: annot at e>

<nd: Unknown/ >

</ annox: annot at e>

<hj : i gnored/ >

</ xsd: appi nf 0>
</ xsd: annot ati on>
</ el enent >

This is a field that will come up in the next section. The point we are drawing attention to here is the
<hj : i gnor ed/ >, which ensures that the field is annotated to ensure serialization is ignored for it.

©2016 Prometheus Consulting
User Guide madura-rules-3.0.1
-20 -

8. Directed Questioning

Sometimes you have many, many fields for a user to give answers to but in practice only a few are
relevant in any one case. It would be nice to allow the user to focus on just those fields and not be
distracted by the others.

To achieve this you can use the Directed Questioning mechanism. The way it works is that your
program focusses on one value that can be derived from the rules. The engine can work out what
information is needed to obtain that one value and can dynamically tell you what fields are needed to
obtain it. The fields may change depending on what answers the user gives to previous fields.

Here is a trivial example. Consider the following set of rules which calculate body mass index.

formula: Custoner "BM" {
bm = weight / (height * height);

}

formul a: Custoner "Height Metric" {
hei ght = hei ght Metri c;

}

formul a: Custoner "Height Inperial" {
hei ght = (hei ght Feet * 0.3048D) + (heightlnches * 0.0254D);

}

fornmul a: Custoner "Wight nmetric" {
wei ght = wei ght Ki | os;

}

formul a: Custoner "Wight pounds" {
wei ght = wei ght Pounds * 0. 453D;

}

The main formula is in the first rule but to make it more interesting the basic information can be
supplied in either metric or imperial units, whichever the user prefers.

The schema for this needs to have the @nknown annotation on all of the fields mentioned, for
reasons that will soon become apparent. So they all look something like this:

<el enent name="wei ght Ki | os" type="doubl e">
<xsd: annot at i on>
<xsd: appi nf 0>
<annox: annot at e>
<nd: Label | abel Nane="Wi ght (Kilos)" />
<nd: Unknown/ >
</ annox: annot at e>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ el enent >

Now, what you want to know is the bm so your code should look like this:

Val i dati onSessi on val i dati onSessi on = m val i dati onEngi ne. creat eSessi on();
Cust onmer custoner = new Custoner();
val i dati onSessi on. bi nd(cust oner);
while ((fieldvetadata =

m rul esPl ugi n. get Enpt yFi el d(cust oner. get Met adat a() . get Fi el dMet adata("bm "))) !
= null) {

| og. debug("found field {}",fiel dMetadata. get Nane());

ask for the field

fi el dMet adat a. set Val ue(sone_val ue) ;

or

m rul esPl ugi n. set Not Known(fi el dvketadata); // if the user indicates they

don't know t he answer

©2016 Prometheus Consulting
User Guide madura-rules-3.0.1
-21-

The first three lines are just normal interaction with the Validation Engine, nothing special. The fourth
line tells the Madura Rules Engine to backchain on the field named b on the cust omer object.
The engine will look for rules that output that field and try and fire them, and that will cause it to look
for fields that rule needs to fire and so on. When it finds a field that has no output rules and no current
value it will return a Fi el dMet adat a describing that field.

You write whatever code you need to obtain a value for that field, call the set Val ue() method and
loop.

When there are no more empty fields the bri field will hopefully have a value.

The actual order of the questions should be regarded as undefined because you want to be free
to change the rules around which will vary what order things are asked in. Also, depending on the
earlier answers, some fields will not be asked for. With that in mind, let's walk through the example.

1. heightMetric. Answer is 1.9

2. weightPounds. Answer is 'Don't know', which means the engine has to try and find weight
another way.

3. weightKilos. Answer is 90
4. Resulting bmi is 24.

Notice that it did not need to ask for heightinches or heightFeet because it already got height using
heightMetric. So it can avoid asking for the fields it doesn't need.

If you want you can preload some answers before starting the sequence. For example if you already
have set a value for weight then weight will not be returned by the get Enpt yFi el d() method and
the user will not have to answer it. Users get particularly annoyed at having to answer questions
they've already answered.

Now that this might not actually get you a value for bri . If the user answers 'don't know' for too many
guestions then the rules will not be able to derive a value. In that case you probably have to inform
them and go around again.

To go around again you have to reset the 'unknown-ness' of the fields. We have to assume that none
of the answers given so far are actually of any use and we must lose the data in the fields as well as
any 'don't know' flags we set. To do this you do the following:

m_r ul esPl ugi n. cl ear Unknowns(cust orer) ;

The API for this calls the rule engine directly rather than just the objects that you saw in Madura
Objects. This is because these operations are specific to the engine so it is appropriate for them to
be dependent on it rather than being called indirectly and making Madura Objects more complex
to handle it. Remember we may have more than one plugin servicing Madura Objects and they will
each have their own specialisations.

Also relevant in this context is a i SNot Known(') function that may be used in the rules.

rul e: Custoner "isnotknown" {

i f (isNotKnown(weightKilos)) {
address = "not known rule fired";
}

}

What this does is probably obvious enough. If wei ght Ki | 0s is set to NOT KNOWN, which is an
explicit setting by the user then this rule will fire. NOT KNOWN and differs from it being UNKNOWN,
which just means we don't have a value yet. The cl ear Unknowns() method sets the fields to
UNKNOWN, which means none of them are now NOT KNOWN.

A tip worth mentioning here is that there is a hardly mentioned annotation available for your use. This
is @mpFi el d. You can annotate any field with this and supply it with text and you might use this to
drive how you ask for the field.

©2016 Prometheus Consulting
User Guide madura-rules-3.0.1
-22 -

Most likely, though, you just want to generate a prompt and an input field. The prompt can be fetched
from Fi el dMet adat a. get | abel (). If there is a list of possible values on this field you can fetch it
using Fi el dMet adat a. get Choi ceLi st ().

Beware of using this with rules that cross objects. The cl ear Unknowns() method only clears one
object and this may confuse things if there is a second object contributing information. You can clear
multiple objects if you want but you do have to know what objects to clear.

You can also, of course, ask for multiple fields using the get Enpt yFi el d() method, just one at a
time though. For example you might ask for bm and then ask for a Ponderal Index (which is just BMI
but the height is cubed). The fields that contributed to the BMI would also contribute to the Pl and
would not need to be reprompted. If one or two extra fields were needed for a PI then they would be
prompted for, but not the others.

©2016 Prometheus Consulting
User Guide madura-rules-3.0.1
-23 -

9. The Rules API

There is almost no API to consider here. The rules are invoked transparently as part of Madura
Objects. There are just two exceptions to this. One is the Directed Questioning feature fully described
in 6 and the other is a subtle side effect of the rules that you need to be aware of.

In Madura Objects a typical sequence in the life cycle of an object involves:

» Fetch or create an object and possibly attached objects.

e Create a Validation Session.

« Bind the object to the Session. This will bind any attached objects as well.

» Perform various rule-monitored operations. Other objects may be attached or removed
during this phase and they will be added or removed to/from the Session as well.

e Save the resulting object structure.

» Close the Session. This will clean up the various internal structures associated with the
Session and its monitored objects. It will not remove the monitored objects but it will reset
them.

The particular thing to be aware of here is that closing the session does change the contents of the

object and it ought not to be reused after that. For example you would definitely not want to swap the

last two steps or you will save empty objects.

However you will not be able to get at this API unless you get hold of the RulesPlugin bean. To do

that just use the get Pl ugi n method like this.

Rul esPl ugi n rul esPlugi n = val i dati onEngi ne. get Pl ugi n(Rul esPl ugi n. cl ass);

Then you can get at its methods. Naturally this also works for other plugins too.

©2016 Prometheus Consulting
User Guide madura-rules-3.0.1
.24 -

A. Eclipse Plugin

The Eclipse[10] plugin[11] supports creating and editing rules files. There is a Wizard that creates
new files under File>New>MaduraWizards. It populates the file with a template of example rules to
help you get started but this will show errors because these rules are not bound to an XSD file. The
first thing you should do is tell the plugin about your XSD file using the File Properties (right click on
the file in Package Explorer, then PropertiesFile>Madura)

- Properties for new_file1.rul +
@l Madura G =

Resource .
TR (sDFiles [new filexsd

Run/Debug Settings Browse...

Restore Defaults Apply
(j] Cancel OK
Figure (2) File Properties

Just give the XSD file and then you can edit your own rules into the rul file. The editor supports
navigation by clicking in the items in the outline and content assistance.

If you are using custom functions in your rules (most people don't) then you need to tell the
plugin about those in the project properties (right click on the project in Package Explorer, then
PropertiesFile>Madura)

v Properties for whatever + X
a| Madura = -
» Resource
Classes path:
Builders =
> Google [bin | |Browse...
Java Build Path
P Java Code Style Class names
b Java Compiler
X nz.co.senanque.SampleExternalFunctions
P Java Editor
Javadoc Location
Project Facets
Project References Workflow
Refactoring History
Run/Debug Settings s mnrrs
Server MyMessage
P Task Repository
Task Tags
P Validation
WikiText
Compute names
orderCompute
Restore Defaults Apply
O) cancel oK

Figure (3) Project Properties

The Classes path field should hold the directory your compiled java classes are placed into. For
maven projects this will default to target/classes/. In the Class names field you just put a comma
separated list of the classes that hold your custom functions. This will enable the validation code

©2016 Prometheus Consulting
User Guide madura-rules-3.0.1
-25-

http://www.eclipse.org
https://github.com/RogerParkinson/maduraeditors

in the plugin to correctly validate your references to the custom functions without flagging them as
errors.

The parser used to validate the rules needs a buffer size setting, this defaults to 400 which is
normally large enough but if you have very long comments in your rul files you might need to make it
larger. Use the preferences page (Window>Preferences>Madura) for this.

¥ ¥ ¥V ¥ Y ¥ ¥ ¥ Y YV

¥ ¥ ¥ ¥ ¥ ¥V V¥V

vy vV v

type Titer text

General

Ant

Data Management
Google

Help
Install/Update

Ivy

Java

Java EE

Java Persistence

JavaScript

Maven

Mylyn

Plug-in Development
Remote Systems
Run/Debug
Server

Team

Terminal
Validation

Web

Web Services
XML

@

Preferences

Madura

Madura Preferences

Buffer size: | 600

|Resmregefaulls‘ |

Apply

| Cancel

Figure (4) Preferences

When everything is in place you should be able to edit your rules file with the plugin editor.

N By OB Y v @
i £y new file.rul 52

- FE R e e e S e L

* Madura Rules

AEFREFEFIREXXFIFREXAIREXXRRRER R RRRR R RRR R R R AR R R R R

formula: SampleObject "sample formula"®

{
decisionField = celsius > 30F;
}
rule: SampleObject "sample rule"
{
if (size == "Small")
{
readonly(testing);
activate(testing);
amount = 16;]
}
}

constraint: SampleObject "sample constraint"

testDouble > 186D;

Figure (5) Editor

To get the plugin use this update site:

©2016 Prometheus Consulting
User Guide madura-rules-3.0.1
-26 -

htt p://gi t hub. conl Roger Par ki nson/ madur aedi t ors/ raw master/site/
To use the plugin you need to be running Eclipse Kepler or later and Java 1.7 or later.

©2016 Prometheus Consulting
User Guide madura-rules-3.0.1
-27 -

B. Licence

Madura Rules is licenced with the GPL V3 licence [7] by default. This means that any code you
develop that makes use of Madura Rules must also be GPL, ie not proprietary code.

However, for projects that require a proprietary option we also offer Commercial Madura Rules
License version 1 for a fee. If you are developing code that is not open source and uses Madura
Rules you must accquire a valid License for all Developers who use Madura Rules in your project.
Madura Rules may be used in many projects simultaneously without additional payments. The
resulting project may be copied an unlimited number of times and deployed to an unlimited number of
computers without additional payments.

All dependencies of Madura Rules are licenced with Apache Licence V2.0 or a compatible licence as
specified in their pom files.

©2016 Prometheus Consulting
User Guide madura-rules-3.0.1
-28 -

http://www.gnu.org/licenses/gpl-3.0.html

C. Release Notes

Documentation revisions.

Added support for new configuration options (Spring Annotations and CDI)
Reworked factory and operations discovery mechanisms

Fixed External Functions when used from the maven plugin.

Documented the format() method (it got missed earlier).

Tidied some errors in binding/unbinding

Changed dependency on MaduraObjects to 2.2.4.

Fixed some problems with the XSD files.

Adjusted parser behaviour to support Eclipse plugin.

Upgraded Spring dependency.

Converted build to maven.

Added pom file for maven projects.

Fixed incorrect ivy conf for javax.xml.bind

Built with Java 1.7

>
o
o
(9]
o
9
=
@D
(@)
—
(9]
o
Jo)
c
[¢]
wn
=,
(@]
=
>
«
3
(9]
(o]
>0
Q
=]
wn
3

Reorganised tests to remove unnecessary interdependencies between
them.

Improved handling of divide by zero.

Switched ProxyField references in rule generation to RuleProxyField
references and added an exception trap for Unknowns.

Added the getEmptyField(FieldMetadata fm) method on RulesPlugin, which
enables directed questioning.

Removed use of MessageSourceAccessorFactory because it does not play
well with Madura Bundles.

Fixed a problem with rules attempting to attach to the wrong object type.
Where this occurs the rule context is ignored, which gives the correct result.
It happens when you have rules applying to an owner object, but you have

©2016 Prometheus Consulting
User Guide madura-rules-3.0.1
-29 -

chosen to not create the owner object, just the child. The net result is that
the child rules are active but the owner rules are not.

Initial release

Fixed failure to fire relevant rules when an object is removed from a
collection.

Fixed memory leak when removing objects from the session.
Fixed issues with the table constraint.
Rules can now refer to inherited fields.

Known problem: One of the tests in AllTests fails intermitently. I'm assuming
this is some config issue | haven't quite solved in the project. It always runs

fine when invoked directly from Eclipse. It also runs on, at most, the third try
using ant. (This seems to be fixed, has not presented in recent builds)

©2016 Prometheus Consulting
User Guide madura-rules-3.0.1
-30 -

	1. Change Log
	2. References
	3. The Concept
	4. The Rule Engine
	5. Writing Rules
	5.1. Simple Rules
	5.2. Functions
	5.3. Decision Tables
	5.4. Constants

	6. Deploying Rules
	6.1. Building with Ant
	6.2. Building with Maven
	6.3. Configuring Your Application
	6.4. Factories

	7. Designing Rule Based Systems
	8. Directed Questioning
	9. The Rules API
	A. Eclipse Plugin
	B. Licence
	C. Release Notes

