
©2016 Prometheus Consulting
Document Revision: Revision: 48

MaduraBundle

User Guide

©2016 Prometheus Consulting
Document Revision: Revision: 48

©2016 Prometheus Consulting
User Guide madura-bundle-4.2.0

- (3) -

Table of Contents

1.Change Log... 5

2.References... 6

3.Introduction... 7

4.Using Bundles... 9

5.Managing Bundles.. 13
5.1.Selecting Bundles... 13
5.2.Maven-based bundles.. 13
5.3.Selecting a Bundle based on Criteria... 13

6.XML Configuration.. 15

7.Bundle Dependencies.. 17

8.Advanced Topics.. 18
8.1.Alternate Timer configurations.. 18
8.2.Exported Beans.. 18
8.3.Listening for Bundles.. 19
8.4.Can I have Multiple Bundle Managers?.. 19
8.5.Scoped Beans.. 20

A.License.. 21

B.Release Notes... 22

©2016 Prometheus Consulting
User Guide madura-bundle-4.2.0

- (4) -

©2016 Prometheus Consulting
User Guide madura-bundle-4.2.0

- 5 -

1. Change Log
Author Date Comment

rogerparkinson 2016-03-24 adjusted reference links

rogerparkinson 2016-03-05 Added XML export attribute to bean definitions

rogerparkinson 2016-01-19 minor format changes

rogerparkinson 2016-01-19 Some formating changes

rogerparkinson 2016-01-19 Documented SessionIdProvider

rogerparkinson 2016-01-19 Extended BundleScope to allow configurable session id
provider

rogerparkinson 2016-01-16 added diagram to show interface dependency structure

rogerparkinson 2016-01-16 Better description of BundleExport and separation of interface
dependencies

rogerparkinson 2016-01-01 documented PropertySourcesPlaceholderConfigurer

rogerparkinson 2015-12-29 fixed problem with getting classes as resources from the class
loader

rogerparkinson 2015-09-20 Annotations now working, including outer configuration

rogerparkinson 2015-08-30 Implemented annotation based configuration

rogerparkinson 2015-08-29 Documented annotation configuration

rogerparkinson 2015-08-29 renamed 'parent to 'export' beans and tidied docs and added
annotation based configuration of beans Tests all work but
documenation of annotations is not done.

rogerparkinson 2015-05-10 Added more detail about session and bundle scoped beans

rogerparkinson 2015-05-09 Updated description of scope and release notes for 4.1.0

rogerparkinson 2015-04-06 clarified the need to release unused bundles.

rogerparkinson 2015-04-03 Added comment about releasing a bundle.

rogerparkinson 2015-04-03 checkpoint: maven build works and all tests run, but yet to
verify servlet behaviour and deletion.

rogerparkinson 2015-03-30 release notes

Roger Parkinson 2015-01-27 Problem with github tags, had to redo build.

Roger Parkinson 2015-01-23 added caveat about WEB-INF/bundles

Roger Parkinson 2014-12-19 Initial commit of restructured project(s)

©2016 Prometheus Consulting
User Guide madura-bundle-4.2.0

- 6 -

2. References
[1] Apache Licence 2.0

[2] Spring Framework

[3] OSGI

[4] Vaadin

[5] pizzaOrderBundle

[6] maduraBundle

[7] perspectivesManager

http://www.apache.org/licenses/LICENSE-2.0
http://www.springframework.org
http://www.osgi.org
https://vaadin.com/home
https://github.com/RogerParkinson/madura-perspectives/tree/master/madura-perspectives-pizzaorder
https://github.com/RogerParkinson/madura-bundles/tree/master/madura-bundle
https://github.com/RogerParkinson/madura-perspectives/tree/master/madura-perspectives-manager

©2016 Prometheus Consulting
User Guide madura-bundle-4.2.0

- 7 -

3. Introduction
These are the objectives:

• Define sub-elements of an application which are self-contained bundles, ie have their own
Java classes and resources.

• Dynamically load these bundles into a running application.

• The sub-elements are unaware of other bundles, so no danger of naming conflicts.

• Service code and resources in the main application can be accessed transparently by the
bundles.

Here's the kind of problem we're solving. Say we have a bunch of resources and code which relates
to a specific set of products and we have application code which calls on the product code. We want
to be able to change the products without dropping the server.

Using Madura Bundle we bundle the resources and code into a jar file. We can then arrange for that
jar file to be loaded dynamically.

The application code, when it wants to access the product information and code just specifies what
bundle it wants to use (of the several that might be active). After that the application code doesn't
know or care that it is accessing a bundle. It looks like normal code and normal resources. The
bundled resources and code are actually injected into the application classes using Spring, so apart
from selecting the bundle, the application code knows nothing about the bundles.

Yes, you can do something like this with OSGi, but not quite all of it. I found that to implement OSGi
in our existing software I would have to repackage all of the existing jar files and resources, including
3rd party ones. Spring [2] have done a lot of work making OSGi bundles out of 3rd party libraries, but
we also have dozens of in-house libraries that would have to be migrated to OSGi before we could
start using it. Not going to happen in any time frame I could set, so we cooked up this instead.

The key difference between this and OSGi is that it will let you access things on the classpath of the
calling application. So all our in-house jar files need no change whatsoever. To be fair to OSGi it
does offer a bunch of things that Madura Bundles doesn't, such as events and security. In an attempt
to maintain some compatibility with OSGi the manifest details used by Madura Bundles is designed to
be compatible with OSGi. Migrating from Madura Bundles to OSGi has not been tested.

A second key difference between this and OSGi is that the bundles can be loaded from Maven
(again, dynamically).

There are two general ways to use Madura Bundles. You can implement a bundle listener, described
in 8.3. In this you write a listener that will be called whenever a new bundle arrives or is removed
from the system. Your listener then locates the relevant beans in the bundle and puts them in some
structure you define such as a list. Your application then scans this list for functions. You might use
this in the following situations

• You have a list of validation operations that your application needs to call at a certain
stage and you want to vary them dynamically. By deploying them in bundles with a
bundle listener your application can register new validation operations as they are added
(and remove them if they are deleted).

• You have various UI components you want to register in a container application. The
components might be menu items, with the code to run if they are picked, forms to
appear etc. These can be delivered to the application as bundles which, as they register
themselves with the application, add their various components to the UI.

Rather than write a bundle listener you can, in simpler cases, just query the bundle manager for
beans of a given type. All beans of that type in all the current bundles will be returned.

The second way to use Madura Bundles is dynamic proxying. In this case you can inject proxied
beans from the bundles into your application. You application is unaware that what was injected
was not the actual bean but a proxy. When it calls the bean the proxy maps to the currently selected
bundle (there can be only one) transparently. Of course your application must have selected the
current bundle before the call takes place.

This is useful where you have a section of an application which is likely to vary over time but you
want sessions that were started to keep running the same code. For example if the application is
order entry you might want existing orders to keep using the order entry system they started with and
new orders to use the newly deployed system. So you would record the bundle name when you save

http://www.springframework.org

©2016 Prometheus Consulting
User Guide madura-bundle-4.2.0

- 8 -

the order and when the order is fetched for further processing you can select the bundle it was saved
with. New orders select the latest bundle.

But note that it only makes sense for only one bundle to be proxied at any one time (actually for any
one thread). This restriction might make you consider the bundle listener approach. However see 8.4

As well as these various way of using bundles there is more than one way of providing bundles:

• The simplest way is to put the bundle into WEB-INF/bundles (in a web application).
These bundles are loaded at startup time and it is a way to include initial or default
bundles inside a war file. Why would you do this rather than simply putting the bundle in
with the other ordinary jar files? Because you might want to add more bundles and be
able to select between this and the other bundles dynamically. For example you might
want to supersede the initial bundle with a later version. There is one restriction with this
approach. If you want to refer to a Spring resource as classpath:myfile.xml it will
fail to find it. Placing the same file in an external directory (the next option) works just fine.

• Have the bundles in a directory and copy any new bundles into that directory. The
directory will be scanned periodically and new bundles loaded.

• Pull the bundles from Maven. This is similar to the directory but instead of jar files
you have place holder files which describe the Maven artifact. The actual jar files are
published to Maven.

If you are the sort of person who likes to go straight to the examples then take a look at the unit
tests in the source project[6] then, for something more like an application you should look at
pizzaOrderBundle[5] which is a working example of a bundle that plugs into the perspective manager
application[7]. PizzaOrderBundle has a self contained UI as well as internal data and logic and it uses
the bundle mechanism to plug into the main application.

https://github.com/RogerParkinson/madura-bundles/tree/master/madura-bundle
https://github.com/RogerParkinson/madura-perspectives/tree/master/madura-perspectives-pizzaorder
https://github.com/RogerParkinson/madura-perspectives/tree/master/madura-perspectives-manager

©2016 Prometheus Consulting
User Guide madura-bundle-4.2.0

- 9 -

4. Using Bundles
We deploy one jar file per bundle. The jar file contains classes and resources and one or more Spring
contexts, either specified by annotations or XML. It can also specify an optional class path in its
manifest. The jar files specified in the classpath are loaded into the bundle with the classes and
resources from the bundle jar file.

Let's assume you have a file called Config.java that is annotated with @Configuration along with
several beans defined by @Bean or one of the @Component variants. This is all quite ordinary for
Spring contexts, nothing new here at all.

The thing that is new is in the manifest file.

Manifest-Version: 1.0
Build-Jdk: 1.7.0_67
Built-By: roger
Bundle-Version: 4.2.0
Bundle-Name: my-bundle-name
Created-By: Apache Maven 3.2.1
Bundle-Description: Example Bundle
Bundle-Class: nz.co.senanque.madura.test.Config
Archiver-Version: Plexus Archiver

The crucial thing here is the Bundle-Class entry which specifies the Config class we mentioned
earlier. To build your bundle using maven you need to specify these manifest entries like this:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.5</version>
 <configuration>
 <archive>
 <index>false</index>
 <addMavenDescriptor>true</addMavenDescriptor>
 <manifest>
 <addClasspath>false</addClasspath>
 </manifest>
 <manifestEntries>
 <Built-By>${user.name}</Built-By>
 <Bundle-Description>Test Bundle Maven</Bundle-Description>
 <Bundle-Name>${project.artifactId}</Bundle-Name>
 <Bundle-Version>${project.version}</Bundle-Version>
 <Bundle-Class>nz.co.senanque.madura.test.Config</Bundle-Class>
 </manifestEntries>
 </archive>
 </configuration>
</plugin>

Those manifest entries are copied into the Spring environment so if you have added a
PropertySourcesPlaceholderConfigurer bean to your Config class you can inject those
values into the other beans in your bundle.

The other thing to do in your Maven build is ensure there is a copy of the BundleRootImpl.class in
the resulting jar file. We can't use the one in the application because we need it to be loaded by the
bundle class loader, not the application class loader.

You don't have to worry about class loaders though. Just add this to your pom file:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <executions>

©2016 Prometheus Consulting
User Guide madura-bundle-4.2.0

- 10 -

 <execution>
 <id>unpack-dependencies</id>
 <phase>compile</phase>
 <goals>
 <goal>unpack-dependencies</goal>
 </goals>
 <configuration>
 <includes>**/BundleRootImpl.class</includes>
 <outputDirectory>${project.build.directory}/classes</outputDirectory>
 <overWriteReleases>true</overWriteReleases>
 <overWriteSnapshots>true</overWriteSnapshots>
 </configuration>
 </execution>
 </executions>
</plugin>

And you're done, you have your bundle. Now let's look at your main application, the thing that calls
the bundle.

Just like in the bundle you define a Spring context in your application by adding a class that looks like
this:

@Configuration
@EnableBundles
@ComponentScan(basePackages = {
 "nz.co.senanque.madura.bundle", "nz.co.senanque.madura.test"})
@PropertySource("classpath:config.properties")
public class SpringConfiguration {
...

These annotations, except for @EnableBundles are all documented in detail in the Spring docs
but, briefly, the @Configuration declares this java class as a configuration class where beans
are declared, @ComponentScan specifies which packages you want scanned for annotated
classes to be made into beans. You must include nz.co.senanque.madura.bundle. The
@EnableBundles adds some extra logic to the scan, and this is the extra bit that Madura Bundles
needs.

That extra bit allows you to annotate your bundle interface classes like this:

@BundleInterface("TestBean")
public interface TestBean
{
...
}

With that annotation the scanner will locate the interface and generate a proxy bean ready for
dynamic linking to the bundle. This is where the magic of dynamic proxies happens. In your
main application you defined an annotated interface (actually you probably put it into a maven
dependency) and in each of your bundles you defined an implementation of that interface. Once
you select which bundle you want the application to use at any instance, the implementation in that
bundle becomes active. Other than actually selecting the bundle the application does not need to
know it is using a bundle at all. It just needs to know about the interface. You can have multiple
annotated interfaces per bundle, of course, because you have multiple beans per bundle.

There is a little bit of configuration needed for the bundle manager and in the above example this is in
the config.properties file that looks like this:

nz.co.senanque.madura.bundle.spring.BundleManagerFactory.directory=./
target/bundles
nz.co.senanque.madura.bundle.spring.BundleManagerFactory.type=impl
nz.co.senanque.madura.bundle.spring.BundleManagerFactory.time=-1

©2016 Prometheus Consulting
User Guide madura-bundle-4.2.0

- 11 -

The values shown here are actually the defaults, except for the directory which defaults to a null
string.

The directory holds your bundles and the time specifies (in milliseconds) how often to check for
changes there (-1 means once only). The type parameter specifies the type of BundleManager to
use. There are two different types: impl and web. The first is just the ordinary bundle manager and
the web version allows you to put bundles into the WEB-INF/bundles directory in your war file. This
is scanned just once at startup. You might wonder what possible use this is because if you have
embedded a bundle in your war file you might as well have used a normal jar file dependency right?
Yes, indeed. But it does come up sometimes when you want to put together a simple demo and not
have to worry about deploying the bundles in a separate directory.

This configuration automatically arranges for an interface bean named bundleRoot to be created and
this maps to the bundle root of the current bundle. That means you can inject it into your application
code and examine it like this:

@Autowired BundleRoot bundleRoot;
...
String currentBundleName = bundleRoot.getName();
...

That will get you the name of the current bundle. If you switch bundles and call
bundleRoot.getName() again you will find it returns a different name.

The last thing you have to know is how to select a bundle. To select a bundle you use the
BundleManager bean (it was automatically defined in the above application configuration). Just auto
wire it into a class in the usual way and call one of the following methods:

setBundle(String
bundleName)

Set the current bundle to the one named and pick the highest
version number.

setBundle(String
bundleName, String
version)

Set the current bundle to the one named, using the name and
version given.

setBundle(BundleVersion
bv)

Set the current bundle to the one specified in the bv.

You can set the bundle just by its name and then the latest version will be selected. Or you can
specify a specific bundle and version by name strings, or you can get the BundleVersion from the
bundleRoot and pass that. You can switch the bundle at any time and the bundle selected will be
used for the current thread, so other threads can continue working with their own bundles. If you pick
a version that is not there it will throw an exception.

When do you need to set the bundle?

• In a web application some time early on when processing a request. Requests are always
assigned a thread for their processing.

• In a stand-alone application some time soon after the application starts.

• In a multi-threaded application you will need to manage the threads ensuring that each
thread picks the correct bundle before it starts processing.

If no bundle is set you will probably see a null pointer exception because the beans you thought were
injecting into your code will not be injected and you will find nulls.
BundleManager also has these two methods:

reserveBundle(BundleVersion
bv)

Reserve the bundle to prevent it from being removed.

releaseBundle(BundleVersion
bv)

Release the bundle allowing removal.

This allows an application to declare when it is using the specified bundle and version. Applications
may be using more than one bundle, flicking between them as necessary. During that time the
bundles being used must not be discarded by the bundle manager, and these two methods tell the
bundle manager that they are in use.

©2016 Prometheus Consulting
User Guide madura-bundle-4.2.0

- 12 -

The actual contents of your bundle can be anything you like, of course, but you also need to define
one or more interfaces to be shared with the calling application. These are the interfaces you
annotate with @BundleInterface and have the application scan. Naturally these interfaces must
be in both application and bundle code for them to compile. But there is a trap here. The interface
code can be compiled into the application but not in any bundle. The reason for this lies in the way
the classloader works and we will explain that in a moment. The vital point to make here is that you
will almost certainly want to put the interfaces into their own jar file or maven project. The application
can have a maven compile dependency on that interface project but the bundles must have a maven
provided dependency on it. That ensures the interface classes are not included in the bundle run time
dependencies.

If you are using jar files rather than maven just do not include the interface jar file in the bundle
dependencies.

There is more information on configuring dependencies in 5

Figure (1) Interface Dependencies

Now, why is this important? The bundle classloader loads classes from the bundle in preference, and
your application uses the normal class loader. If you have an interface MyInterface the application
will load it from the application classloader, of course. The bundle will look for the same class in the
bundle class loader. If it finds it there you will see strange errors suggesting that the implementation
class of MyInterface does not conform to the MyInterface specified by the application. The two
class definitions are not the same and the JVM complains. If, however, the bundle classloader does
not find the MyInterface class it will then search the application classloader and it will find it there.
In that case the two will match, eliminating the errors.

This only matters for interfaces shared across the aplication/bundle boundary. Other interfaces used
by the bundle that the application does not see are no concern here. In practice this affects a very
specific set of interfaces you have full controll over.

©2016 Prometheus Consulting
User Guide madura-bundle-4.2.0

- 13 -

5. Managing Bundles

5.1. Selecting Bundles

The simplest way to make your bundles available to your
application is to just copy their jar files into the directory specified by
nz.co.senanque.madura.bundle.spring.BundleManagerFactory.directory. You can
copy bundles into the directory while the application is running and if you have specified a value (in
milliseconds) for nz.co.senanque.madura.bundle.spring.BundleManagerFactory.time
then the directory will be scanned that often for new bundles. A common scenario is for the
application code to specify only the bundle name, not the version when it selects that bundle. So
when you copy a new version of the bundle into the directory the next select will find the latest
version.

But sometimes you want to lock on to a specific bundle, for example if you have used the bundle
to produce a quote for a customer and you want that quote to be stable for a time so you want
to go back to the exact same bundle to redisplay it or recalculate it. In that case you can use the
bundleRoot bean (again, just auto wire it into your application) to find out the current name and
version of the bundle you are using, store that information in the quote and use it to select the bundle
again when the quote is retrieved later.

5.2. Maven-based bundles

It is often useful to store the bundles in maven rather than a directory, but we still need a directory
to tell the bundle manager what Maven artifacts we want to use. The bundles directory (defined
by nz.co.senanque.madura.bundle.spring.BundleManagerFactory.directory) can
have .jar files but it call also have .bundle files. They look like this:

Bundle-Artifact=nz.co.senanque:madura-testbundle:4.2.0

You would probably name a file like this madura-testbundle:4.2.0.bundle or similar, but
the name is not used. The value defined by the Bundle-Artifact entry is used to pull the jar file and
its dependencies from Maven. It is added to the bundle classpath the same way as a jar file. To
add bundles dynamically you just copy a bundle file into the bundles directory. You might also use
LATEST for the version and, when you publish a new version of the bundle to Maven, just touch the
relevant bundle file.

There are two system properties you can specify to tell Maven where to find its repositories, but they
default to sensible values so you may not need them.

• madura.maven.local.repo Defaults to ${user.home}/.m2/repository

• madura.maven.remote.repo Defaults to central,default,http://
repo1.maven.org/maven2/. You can specify multiple remote libraries. Each entry
needs a name, type, url (all comma separated) and the library entries are also comma
separated.

Your maven based bundles can have dependencies, of course, and these will be pulled from maven
as well. To avoid having unnecessary duplicate libraries try and ensure all the dependencies are also
dependencies of the main application, and make the bundle dependencies scope provided.

5.3. Selecting a Bundle based on Criteria

You can add other entries to the manifest file (or the .bundle file) and use them as bundle selection
criteria. For example say your manifest file looks like this:

Manifest-Version: 1.0
Build-Jdk: 1.7.0_67
Built-By: roger
Bundle-Version: 4.2.0-SNAPSHOT
Bundle-Name: bundle-maven2

©2016 Prometheus Consulting
User Guide madura-bundle-4.2.0

- 14 -

Created-By: Apache Maven 3.2.1
Bundle-Description: Test Bundle Maven2
Bundle-Class: nz.co.senanque.madura.bundle.Config
Archiver-Version: Plexus Archiver
from-date: 01-Jan-2011
to-date: 01-Jul-2011

We added two entries at the bottom: from-date and to-date. Now how do we use them?

for (BundleRoot br:bundleManager.getAvailableBundles())
{
 String fromDate = br.getProperties().getProperty("from-date");
 String toDate = br.getProperties().getProperty("to-date");
 String bundleName = br.getProperties().getProperty("bundle.name");
 if (some test to decide if this is the bundle you want)
 {
 bm.setBundle(bundleName);
 break;
 }
}

This example loops through all available bundles and accesses the extra criteria in each to see if it is
the bundle we want. If you are using Maven based bundles you can add the extra criteria to a .bundle
file. The .bundle file entries will override the entries in the manifest file if they overlap.

©2016 Prometheus Consulting
User Guide madura-bundle-4.2.0

- 15 -

6. XML Configuration
If you prefer XML rather than annotations to build your Spring contexts this is what the XML for a
bundle might look like:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans http://
www.springframework.org/schema/beans/spring-beans-2.0.xsd">

 <bean id="PropertySourcesPlaceholderConfigurer"

 class="org.springframework.context.support.PropertySourcesPlaceholderConfigurer"/
>

 <bean id="TestBean" class="nz.co.senanque.madura.bundle0.TestBeanImpl">
 <property name="content" ref="bundleName"/>
 <property name="resource" value="classpath:BundleResource.xml"/>
 </bean>
</beans>

You build this slightly differently:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.5</version>
 <configuration>
 <archive>
 <index>false</index>
 <addMavenDescriptor>true</addMavenDescriptor>
 <manifest>
 <addClasspath>false</addClasspath>
 </manifest>
 <manifestEntries>
 <Built-By>${user.name}</Built-By>
 <Bundle-Description>Test Bundle Maven</Bundle-Description>
 <Bundle-Name>${project.artifactId}</Bundle-Name>
 <Bundle-Version>${project.version}</Bundle-Version>
 <Bundle-Context>bundle-spring.xml</Bundle-Context>
 </manifestEntries>
 </archive>
 </configuration>
</plugin>

The only difference is that there is a Bundle-Context entry rather than a Bundle-Class. The
bundle-spring.xml file should be in the top directory of the jar file.

To configure an application in XML use a context like this:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:bundle="http://www.madurasoftware.com/madura-bundle"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="

©2016 Prometheus Consulting
User Guide madura-bundle-4.2.0

- 16 -

http://www.springframework.org/schema/beans http://
www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/util http://www.springframework.org/
schema/util/spring-util.xsd
http://www.madurasoftware.com/madura-bundle http://www.madurasoftware.com/
madura-bundle.xsd
http://www.springframework.org/schema/context http://
www.springframework.org/schema/context/spring-context.xsd
http://www.springframework.org/schema/aop http://www.springframework.org/
schema/aop/spring-aop.xsd">

 <context:annotation-config/>
 <context:component-scan base-package="nz.co.senanque.madura.bundle"/>
 <bundle:component-scan base-package="nz.co.senanque.madura.test"/>
 <bean id="propertyConfigurer" class=

 "org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property name="location" value="classpath:config.properties"/>
 </bean>

</beans>

This configures all the annotated classes, but we don't need the java class with @Configuration.
The two component-scan entries are doing two different jobs. The first is Spring's usual scan for
@Component beans. The second is scanning for interfaces to turn into proxy beans.

You can go a level deeper and avoid annotations altogether, but it is doubtful you want to read about
it. Take a look at the tests in the madura-objects projects for examples.

©2016 Prometheus Consulting
User Guide madura-bundle-4.2.0

- 17 -

7. Bundle Dependencies
Often your bundle code will have dependent code libraries it needs in order to run. There are several
approaches to managing this.

The first way is to use maven based bundles and then just let maven handle the dependencies. This
will work, but it is not quite optimal because there are probably duplicate libraries across multiple
bundles and your application. These will increase the memory footprint unecessarily. The simple
answer to this is to make sure as many bundle dependencies as possible are scoped provided in
the bundles' pom files, and make sure these are also dependencies for the application.

If you are not using maven based bundles you can use a Class-Path entry in the bundle's manifest
file and copy the relevant dependencies into a subdirectory under your bundles directory. This is
harder to organise and you don't solve the memory footprint problem, but it does work. You only need
to add entries for dependencies that are not also dependencies of the application.

You use the Class-Path entry like this:

Class-Path: lib2/ant-optional-1.5.1.jar lib2/antlr-2.7.6.jar lib2/
aopalliance-1.0.jar lib2/asm-1.5.3.jar

This assumes the there is a directory called lib2, a subdirectory of your bundles directory, and that
you copied the relevant jar files into it. This feature is of limited use though. For example it does not
work with the WEB-INF/bundles directory. If your bundle has dependencies that are not in the main
application consider using Maven based bundles.

©2016 Prometheus Consulting
User Guide madura-bundle-4.2.0

- 18 -

8. Advanced Topics

8.1. Alternate Timer configurations

You may want to use an external scheduler to trigger the scans. This is easy to configure in Spring:

@Component
public class MyScheduler {

 @Scheduled(fixedDelay=10000)
 @Autowired BundleManager bundleManager;

 public void runScheduler() {
 bundleManager.scan();
 }
}

Or in XML:

<task:scheduler id="myScheduler" pool-size="10" />
<task:scheduled-tasks scheduler="myScheduler">
 <task:scheduled ref="bundleManager" method="scan"
 fixed-delay="10000" />
</task:scheduled-tasks>

There are many options for timers in Spring and this is a simple example that works well enough. If
you have specialised requirements you should be able to find what you want using some variant of
this.

8.2. Exported Beans

Sometimes you want to define beans in the application and inject them into your bundled beans.
These are typically things that work with transactions. You start the transaction in your application
and you want all the beans, including the bundled ones, to participate in that transaction rather that
start their own.

This is quite simple. Just annotate your beans like this:

@Component("exportBean")
@BundleExport
public class TestExportBean {
....

The scanner will identify the export beans and tell the bundle manager about them. You can auto
wire the exported beans into your bundled classes as if they were defined locally.

You can get exactly the same effect using the @Bean annotation in a @Configuration.

@Bean
@BundleExport
public TestExportBean2 getTestExportBean2() {
....

That allows you to export a bean that uses a class from a library etc, that is not convenient to
annotate directly.

If you are using XML then you also have two options for exporting:

©2016 Prometheus Consulting
User Guide madura-bundle-4.2.0

- 19 -

<bean id="TestBean2" class="nz.co.senanque.madura.testbeans.TestBeanImpl"
 bundle:export="true">
...
</bean>

This does exactly the same as the annotations. The last way to export beans is to add them to the
bundle manager definition like this:

<bean id="bundleManager"
 class="nz.co.senanque.madura.bundle.BundleManagerImpl">
 <property name="directory" value="./target/bundles"/>
 <property name="exportedBeans">
 <map>
 <entry key="exportBean" value-ref="exportBeanExample"/>
 </map>
 </property>
</bean>

This just injects a map of exported beans into the bundle manager. It does just a little more than the
other methods because it allows you to change the name of the exported bean. There is actually
only one bean, defined as exportBeanExample in the application context. The bundle contexts,
however, refer to this bean as exportBean. In practice you don't normaly have any need for this
extra name.

8.3. Listening for Bundles

You can optionally listen for bundles being added or deleted. This is useful if you need your
application to do something interesting like register a bundle for use in certain circumstances. You
can always just query for the bundles that are there but then you would have to poll for bundles which
is dull.

To listen for bundles just implement the nz.co.senanque.madura.bundle.BundleListener
interface and define your class as a bean in the application. The bundle manager will find it so there
is no need to inject it anywhere. It will be called when the list of bundles change.

8.4. Can I have Multiple Bundle Managers?

Yes, you can, but be careful. If you are not using dynamic proxying there seems little point in defining
muliple bundle managers. Just have your bundle listener(s), you can have several, identify the
different beans and register them in in your application in the different ways they fit. For example
some beans will go into one list, other beans will go into another. It's your application, you decide
this.

If you are using dynamic proxying you might want to use multiple bundle managers. There are some
restrictions though.

First, you won't be able to use the namespace in your Spring context file. The namespace assumes
just one bundle manager. This is not a major restriction, but it makes your Spring file a little more
complex.

The second thing is that you need to select a bundle for each bundle manager so that the proxies
are all set up. Possibly you can avoid this when you know that only one bundle will be used at a time,
for example in this web request we know we are using a bundle of type A but not a bundle of type
B. So we may be able to avoid selecting a bundle of type B. In that case we tell the bundle A bundle
manager what bundle we want and leave the bundle B manager unselected. It is probably safer to
set both, though, because someone will change your code later and not realise this, and the resulting
problem might be obscure.

Finally each bundle manager should point at a different sweep directory so that the bundles are not
being loaded more than once.

Can you have bundles within bundles, ie one bundle refers to another bundle? This should work,
though we haven't tried it ourselves. The second bundle would, of course, need to have its own
bundle manager defined in the first bundle with its own sweep directory etc. If you are using proxies

©2016 Prometheus Consulting
User Guide madura-bundle-4.2.0

- 20 -

then you'd need to ensure the first bundle picked the second bundle before it called it. Remember
this has to happen for each thread.

If you are not using proxies you need to go find the bundle using
BundleManager.getBeansOfType(Class) or you can use the BundleListener approach.

8.5. Scoped Beans

Spring allows you to define beans as session scoped like this:

@Component("myBean")
@Scope("session")
public class MyBeanImpl {
....

In a web application Spring will arrange for one of these beans to be created per session, and a
proxy injected where necesary. This means that each different session sees its own bean, it does not
share it with the other sessions, though the code calling the bean (through the proxy) is unaware of
this. Spring manages mapping the right beans to each request based on its session identifier.

When using bundles you often want to export these beans forthe bundles to use. This is simple to do:

@Component("myBean")
@Scope(value="session", proxyMode = ScopedProxyMode.TARGET_CLASS)
@BundleExport
public class MyBeanImpl {
....

There are some extra qualifiers on the @Scope to ensure Spring wraps the bean in a proxy, making it
suitable to export to the bundles. and after that the bundles can use it like a normal export bean. One
thing to watch with any session beans is that Spring defers instantiation of session beans until they
are asked for because it needs a web session to store them against and there isn't one at startup. So
be careful you don't force the session bean to be created early, for example by injecting it into some
bean that uses it in an initialisation method.

But when using bundles you have applications that may switch between several bundles and each of
those bundles may define a copy of myBean that needs to be a session bean. But you do not want
one bean per session. You want one bean per session per bundle.

To achieve this we have a special scope named 'bundle' and you use it like this:

@Component("myBean")
@Scope("bundle")
public class MyBeanImpl {
....

The scope is set up automatically by the bundle manager so there isn't anything else you have to
do. Naturally this is only valid for beans defined inside bundles, not elsewhere. It will work just fine
when there is no web session, falling back to an internal dummy session, though we can't think of a
situation you would need that.

By default the scope relies on Spring's session id which assumes you are using
Spring's MVC that records the id in a ThreadLocal. If you are using something
else, such as Vaadin[4], you need a different way to get a session id. Just implement
nz.co.senanque.madura.bundle.spring.SessionIdProvider, in a @Component
annotated class, and put it into a package scanned by the application. We have already built one for
Vaadin. It is used in [7].

https://vaadin.com/home
https://github.com/RogerParkinson/madura-perspectives/tree/master/madura-perspectives-manager

©2016 Prometheus Consulting
User Guide madura-bundle-4.2.0

- 21 -

A. License
The code specific to MaduraBundle is licensed under the Apache License 2.0 [1].

The dependent products have compatible licenses specified in their pom files.

http://www.apache.org/licenses/LICENSE-2.0

©2016 Prometheus Consulting
User Guide madura-bundle-4.2.0

- 22 -

B. Release Notes
4.2.0

Added XML export attribute to bean definitions.

Extended BundleScope session id provider to allow configurable
mechanism.

Reworked the testing structure for more comprehensive tests.

Fixed problem with loading environment variables and @PropertySource
files.

Fixed problem with getting classes as resources from the class loader.

Implemented annotation-based configuration.

Added automatic bundleRoot bean (when using annotation-based
configuration).

4.1.0

Added scope 'bundle', a custom Spring scope to manage session beans
that are specific to a bundle.

Fixed a bug in the classloader which prevented scanning for classes in a
package.

4.0.4

Reworked the bundle mapping because there were holes in the code. This
means theat deleting a bundle from the directory now works. Also moved
the BundleManager code that handles the servlet context into its own class.

Reworked the URL calculation. Previous versions were innacurate, often
returning null on a request for a URL rather than a jar:file:... style URL.

4.0.3

Clean release.

4.0.2

Problem with github tags, had to redo build.

4.0.1

Allow for missing WEB-INF/bundles.

Publish the xsd file

4.0.0

Added Maven loading mechanism.

Restructured application to allow Maven testing, specifically added the
madura-bundles parent project, madura-bundle-maven and the maven-
bundle-test project.

3.9.3

Fixed a problem with variable case in bundle names. Bundle names are
now case insensitives.

Changed the behaviour of bundle deletions so that the bundle remains in
memory, but is flagged as shut down. Actually removing the bundle caused
issues when a session remained bound to the deleted bundle.

Added loading bundles from WEB-INF/bundles, useful for demos.

©2016 Prometheus Consulting
User Guide madura-bundle-4.2.0

- 23 -

Reworked the bundle map to make finding which bundle is required more
explicit.

Store bundle classloader in a threadlocal so we can use it in
class.forName().

Local classpath failed to find the jar files: fixed.

Upgraded Spring and slf4j versions.

3.9.2

Removed benign XSD errors reported by Eclipse.

3.9.1

Moved build to maven.

3.9

Added maven pom file

3.8

Built for Java 1.7

3.7

Found and fixed several inconsistencies in classpath handling. The
std bundle manager now uses BundleClassLoader exclusively and
ChildFirstURLClassLoader is now deprecated.

Improved documentation on how to handle session beans.

Added FixedUrlsBundleManager, a bundle manager which accepts a fixed
list of bundles used to provide demos where switching the bundles is not
critical.

3.6

Fixed problem with log out.

3.5

Fixed non display of source in Eclipse.

Improved the docs to describe handling multiple bundles.

Upgraded dependency on MaduraDocs to latest version.

Modified the ChildFirstURLClassLoader to try resources both with and
without the leading slash in attempting to find one.

3.4

Added a way to propagate the session scope from the owner beanfactory
to the bundle beanfactory, so you can define session scope beans in the
bundle.

3.3

Just rearranging the dependencies.

3.2

Added default bundle, always the last bundle loaded.

Added getBeansOfType method to bundle manager. This fetches all beans
of the given class type and returns a map containing the bean and the
bundle name it was found inside.

Fixed an NPE that happens if we can't open the bundles directory.

©2016 Prometheus Consulting
User Guide madura-bundle-4.2.0

- 24 -

3.1

Added child first classpath and made that the default. Not completely
convinced this is working right, but if there is no conflict with the parent you
definitely get what is in the bundle.

Added bundle listener interface and trivial sample implementation.

Added access to bundle properties.

Added export of application beans.

3.0

Added the timer.

Removed the need for explicit init.

Simplified the docs.

Reworked some of the sample code.

2.1

Tidying the build

2.0

Added classpath handling on the bundles. This is so you can specify a list
of external jar files in the bundle jar and these will be loaded in the bundle's
class loader.

1.0

Initial version

	1. Change Log
	2. References
	3. Introduction
	4. Using Bundles
	5. Managing Bundles
	5.1. Selecting Bundles
	5.2. Maven-based bundles
	5.3. Selecting a Bundle based on Criteria

	6. XML Configuration
	7. Bundle Dependencies
	8. Advanced Topics
	8.1. Alternate Timer configurations
	8.2. Exported Beans
	8.3. Listening for Bundles
	8.4. Can I have Multiple Bundle Managers?
	8.5. Scoped Beans

	A. License
	B. Release Notes

