Spring Integration Reference Manual

3.0.1.RELEASE

Mark Fisher , Marius Bogoevici , Iwein Fuld , Jonas Partner , Oleg Zhurakousky , Gary
Russell , Dave Syer , Josh Long , David Turanski , Gunnar Hillert , Artem Bilan , Amol Nayak

Copyright © 2009 2010 2011 2012 2013 2014 GoPivotal, Inc. All Rights Reserved.

Spring Integration

Table of Contents

L 1= 7= Lo Xiv
I (= To [T (=10 0 =T o1 £ Xiv
Compatible Java VEISIONSiiuiiiiiei e et et e e Xiv
Compatible Versions of the Spring Frameworkcoooviiiiiiiiiiiiiine e Xiv

2. COUE CONVENTIONS vttt ettt ettt e e e et e e ettt e b r e e e e et e e e ba e e e e e e e Xiv
VAV o= L =T TP 1
1. What's new in Spring INtegration 3.07oouuiiiiiiiiii e 2
I O N [TV @0 g o Lo 1= o | £ PP 2
HTTP ReqUESt MaPPING ...uueeiiiiieeie ettt e e e e aeans 2

Spring Expression Language (SpEL) Configurationocociiiiiiiiinieiiiinneiennnn, 2

SPEL FUNCHONS SUPPOIT ..uiiiiiieiii e et e e e e e e e e e et e e et e e eanaees 2

SPEL PropertyACCESSOrS SUPPOIT .. c.uieiii ittt e e e ees 2

Redis: NeW COMPONENTSuuuiiiiiiiii it e e e e 2

Header Channel REQISIIYcovuiiiii e e 3

MongoDB support: New ConfigurableMongoDbMessageStorecocvvevveeinnnens 3

3V (o] ST U] o] o Lo] o AT PP 3

B I VLS T o Lo) o 3

1 D QS 0] o] oL ¢ PP PP 3

TCP/IP Connection Events and Connection Managementcccoovveveiiinnenennnnnn. 3

Inbound Channel Adapter SCript SUPPOItiiiiiiii e e e 4

Content Enricher: Headers Enrichment SUPPOItc..iviiiiiiiiiiiie e, 4

1.2. GeNeral ChANQEScoouuiiiiiii e e et e e et e e e 4
MeSSage ID GENEIALIONciviiiiiii i e e e e e e e e e eaaaes 4
<gAtEWAY> CRANQES . .ceiiiiiei e e 4

HTTP ENdPOint ChaNGEScooouiiiiiiiiii ettt e eaaes 4

Jackson SUPPOIT (JSON) ..ouuiiiieiii e e e e e e e aaens 5

Chain Elements "id" AtHDULEc.uiiiiiiie e 5
Aggregator ‘empty-group-min-timeout’ Propertyoooeveveeiiiiinieeiii e 5
Persistent File List Filters (file, (S)FTP) oo 5

Scripting Support: Variables Changes ... 5

Direct Channel Load Balancing configurationcccooeviiiiiiiiiiiinieniiii e 6
PublishSubscribeChannel BEhavior ... 6

FTP, SFTP and FTPS Changescccuuiiiiiiiiiaiiiee e 6
'requires-reply' Attribute for Outbound Gatewaysccoceeveviiiiiiiiieii e, 7

AMQP Outbound Gateway Header Mappingcccccuvveviieiiiieiiiieeiiieeeineeeieeeaneeenn 7

Stored Procedure Components IMpProveMeNtsc..vvieuieeiiiiiiiieeieeeiiee e 8

Web Service Outbound URI Configurationcoooeiiiiiiiiiiniiiiecceeecin 8

Redis Adapter ChanQgEScouuiiiiiiiii e e e e e eaas 8

AVISING FIIEIS ..ot et e ea s 8

Advising Endpoints using ANNOLALIONSoooiiuiiiiiiiiiieie e 8
ObjectToStringTransformer IMProvemMeENtscoeveuviiiiiieiiiieiii e 9

JPA SUPPOIt CRANGES ...euiiiiieii et e e 9

Delayer: delay @XPrESSIONuuiiiiiiiiiieiiii ettt e e e e e e et e e e e aeen 9

JDBC Message Store IMProVEMENTSc.vuiieiiiiitiiiiiee e e e 9

IMAP Idle ConNection EXCEPLIONSoveuuiiiiiieiieeei e 9

Message Headers and TCP ... 10

JMS Message Driven Channel Adapterc..ovevviiiiiiiiii e 10

Spring Integration
3.0.1.RELEASE Reference Manual ii

Spring Integration

RMI INDOUND GAEWAYvuiiiiiieiii it e e e e e e e e e e e e eanas 10
XSItPayloadTranSfOrMEer ... 10

[I. Overview of Spring Integration FrameWworKcooouiiiiiiiiiii e 11
2. Spring INtegration OVEIVIEWcc.uuieiiieiiiee e e et e e e e e e e e e s e e e et e et e e aanaeenns 12
2.1, BACKGIOUNGeieeiiii et ettt e e e e e e e e et e eaa s 12
2.2. G0oals and PriNCIPIESuniiiiiiiei e 12
P2 T Y/ - V1 T @] a1 o To] 1= | 13
MBS SAGE .. ittt e e 13
MeSSage ChaNNEL ... e 13
MeSSage ENAPOINTcooiiiiiie e e e e e e e e e 14

2.4, MeSSage ENAPOINTScouuiiiiiiiii et 14
B = 1053 {0122 1= SR 15
L PP 15
01 U1 (=] PP PPTPPR 15

ST o] 11 1= PSP TOPPR 15
[0 =T = (0] 16
SEIVICE ACLVALOL ...t ettt e et e e eaans 16
ChannEl AAPLET ... oo e e 16

1B o =T Y/ LYY= T |1 o N 18
3. Messaging ChannEIS ... et 19
3.1. MeSSAGE CRANNEIS ...ttt 19
The MessageChannel INterfacecc.oviviiiiiii i 19
PollableChannel ... 19
SubscribableChannelco.iiiiii 19

Message Channel Implementationsccuoveiiiiiiii e 19
PublishSubscribeChannel ... 20
QUEUECINANNEL ... e 20
PriorityChannel ..o 20
ReNdezvousChannel oo 21
DIreCtCRANNEI ... oo 21
EXECULOrCRANNEL .. .o 22

Scoped ChannEl oo 23

Channel INTEICEPIOIS .. .oiiiiie i e 23
oYY o [T o [=T 0] 0] L 25
Configuring Message Channels ... 25
DirectChannel Configurationcoeuuiieiiiinieiii e 26

Datatype Channel Configurationcc.oiiiiiiiiiieii e 26
QueueChannel Configurationooeuiiiiiiiiiii e 27
PublishSubscribeChannel Configurationccoeiiiiiiiiiiiieii e 28
EXECULOrCRANNEL .. .o 29
PriorityChannel Configurationooouiiiiiiiiii e 29
RendezvousChannel Configurationc.cooveieiiiiiiiiiinie e 29

Scoped Channel Configurationcccoevuieiiiiiii e 29

Channel Interceptor Configurationcooouuiiiiiiiiiiiiii e 30

Global Channel INtEIrCEPLONviiieii i 30

LAY (= =T o 31

Global Wire Tap Configurationcooocuviiiiiiiiee e 32

Special ChannElscooouiiiiii e 32

3.2. Poller (POlliNg CONSUME) ...iuuuiiiieii e e e e e e e e e e e e e e e et e e e eanas 32
3.3, Channel AdaPLer ... et 33

Spring Integration
3.0.1.RELEASE Reference Manual iii

Spring Integration

Configuring An Inbound Channel Adaptercooveiiiiiiiiii e 33
Configuring An Outbound Channel Adapter ..o 35
Channel Adapter Expressions and SCrPLSovvvevviiieiiiiiniiiiiie e 35

G V1YY Y= o [To T = o o = 36
INEFOAUCTION ..t et e e e e e e e e e eaees 36
ConfiIgUIING BIIAGE ...t eeees 36

Y =TT To [I @0) 1 [o) o PP 38
4.1 MESSAGE ...nieniiieie ettt ettt e et a e ea e ens 38
The MeSSage INErfACEiiiiiiii e 38
MESSAJE HEAUEBISceviiii e e 38
MesSsage ID GENETALIONcc.uiiiiiiiiie et 39

Message IMPIEMENTALIONScoeuuiiiii e 40

The MessageBuilder Helper Classcc..viiiiiiiiiiie e 40

5. MESSAQE ROULING . eeniitiiiite ittt e e et e e e e et e et e et e e et e e eaneaenns 42
L0 I oo 11 (=] £ PP 42
OVEIVIEW ...ttt ettt e ettt e e e e e et e e e e tt e e e e eaa e e e eaan e eeeenns 42
Common ROULEr PArametersco.uiiuiiiiiiei et e e e e e 44
Inside and Outside of & Chainoooiiiiiiiii e 44

Top-Level (Outside of @ Chain)c.oiviiiiiiiic e 45

Router IMplemeNntationSiiiuiii e e 45
PayloadTyPEROULETiiiiiiiiiei s 45
HeaderValUBROULEToooiiiiiii e 46
ReCIPIENTLISTROULET .. .eeeiie e a7

D= 11 T o 10 =] 48

Routing and Error handlingcc.uoeviiiiiiic e 48
Configuring (Generic) ROULEToiiuiiiiii e e 48
Configuring a Content Based Router with XMLcccoiviiiiiiiiiiiiinieecie, 48
Configuring a Router with ANNOtationscocvuiiviiiiiii e, 50

DYNAMIC ROULEIS .. .oenieiie ettt e e e e e e e ean s 50
Manage Router Mappings using the Control BuScccoveviiiiiiiiiiiiennnns 53

Manage Router Mappings using JMXccoiiiiiiiiiieiiiecin e 53

I |1 = S PP PT PP 54
T 10T [T 1o) o PN 54

(O] a1iTo 8 g1 aTe [=11 (-1 54
Configuring a Filter With XIMLcoouiiii e 54
Configuring a Filter with Annotationsccccooviiiiiiii e 56

LSRR o 111 Y 57
TageTo 011 o] o PP PT PPN 57
Programming MOEIiiiiiiiiiiii e e e 57
L@70] a1{To 8 g aTe ST o] 11 €= S 57
Configuring a Splitter using XMLoiiiiiiiii e 57
Configuring a Splitter with AnNNOtAtioNScccouviiiiiiiiiiiii e 58

Lo o[| =T = (o 59
INEFOAUCTION ...ttt e e e et et e e e e e e aees 59
FUNCHONAIILY ...ttt e e enaans 59
Programming MOGEIcoouniiiii e 59
AggregatingMessageHandler ... 59
REICASESIIAEGY ...eevvuieiiiii ettt e e 61

(70 1] Fo Vi o] 11 1= 1 (=T | 62
Configuring @an AgQQIrEgALOLciuuuiiiii et 63

Spring Integration
3.0.1.RELEASE Reference Manual iv

Spring Integration

Configuring an Aggregator With XMLccoooiiiiiiiiiiic e 63
Configuring an Aggregator with ANNOtatioNnscocociviiiiiiiiineiiiecieeeenne, 67

Managing State in an Aggregator: MessageGroupStorecceveveveveineeenneeennnn 67

LR T =TS o [T= o Vo T 69
INEFOAUCTION ..t et e e e e e e e e e eaees 69
FUNCHONAIILY ...t e e e 69
Configuring @ RESEOQUENCETcuuuieiiiieii i ei e et e e e e e e e e e e e e et e e e eeanns 70

5.6. Message Handler Chain ...t 71
T 10T [T o) o S 71
Configuring @ ChaiNiie e 72

6. Message TranSfOrMEALIONcc..iiiu it e e e e e eaa e 75
L0 I I =T 0 1S 0T 1 1= 75
] o [N L1 1o o IR PRSPPI 75
Configuring TranSTOIMETiiii e e 75
Configuring Transformer With XMLooiiiiiiiiiiiii e 75
Configuring a Transformer with AnNnotationscccoveviiivii i, 81

Header FlEr ... et e 81

(I ©o] 01 1= | Al =t] X 1= 81
] o [N L1 1o o IR PRSPPI 81
Header ENFICNEN ... e e 82
Payload ENFCNEI ... 84

(O] o 1T 81 r=\1 1 o I 84

EXAMPIES ...t e 86

6.3, ClaimM CRECK ...iitiee e et e aen 87
] o [N L1 1o o IR PRSPPI 87
Incoming Claim Check TranSfOrmerooouiiiiiiii e 88
Outgoing Claim Check TransformMerco.uuiiiiiiiii e 89

A WOrd 0N MESSAQGE SO ...vvuiiiiiiiii et e e e e e e e e e e eaes 90

7. MesSSaging ENCPOINTSeuiiiiiii e et et e et e e e 91
7.1. MeSsage ENCPOINTScoouuiiiiiiiiiiii e 91
MESSAGE HANAIEKceeeiei e e e e 91
EveNnt DIVEN CONSUMETuiiiiiiii ettt e e e et e et e e e e ea e aaaaaes 91
POING CONSUMET ..ottt ettt ettt e e et et e e e et e e eaba e eeens 92

I F= T LT 0 F= Tt TS U]] Lo 93
Change Polling Rate at RUNIIMEooiiiiiiii e 98
Payload Type CONVEISIONuuiiiiiiiieieiii ettt eaens 98
ASYNChronous POHINGiiee e 99
ENdpoint INNEI BEANS ... ccuuiiiiiiiiiieee et 100

7.2. MeSSAQING GAEWAYScevvineiiiiiieeteti ettt e et e et e et e e e et e e e 100
Enter the GatewayProxyFactoryBeanccccuvviiiiiiiiieiiii e e e 100
Gateway XML NameSpace SUPPOITttt e 100
Setting the Default Reply Channel ... 101
Gateway Configuration with Annotations and/or XMLccooveviiieiiiniiiineennnnn, 101
Mapping Method Arguments t0 @ MESSAJEccuuiiiuiiiiiiiiiii e 103
Invoking NoO-Argument Methodscovoiiiiiiiiiii e 103

L o]l o =T o |7V P 104
ASYNCHIONOUS GAEWAYueeeniiiteiii et e et e et e et et e e e et e e ea e aean s 105
Gateway behavior when N0 reSPoNSE ArfiVESoveveeiiiieiiiinieeeiisee e 106

7.3, SEIVICE ACHVALOK ...iiiiii e e et e e et e e e 108
INEFOAUCTION ..ttt e et e e et e et e eaneas 108

Spring Integration
3.0.1.RELEASE Reference Manual Y,

Spring Integration

Configuring SErvice ACHVALOLcccuuiiii i e e e e e 108

T4, DEIAYET .. 109
T 10T [T 1o) o 1 P 109

(70 a1 To U g1 aTe [l D I=F= 1Y =] 110
Delayer and MeSSAgE SEOMEiiiuniiiiiiii et e e e 111

7.5. SCHPLNG SUPPOIT ..ttt ettt ettt e et e e et eeeeba s 112
Script CONfIQUIALIONiiiei e e e 113

7.6. GIOOVY SUPPOIT ..ottt ettt ettt e et et e et et et et e e e e ea e en e enaeenees 115
Groovy CONFIQUIALIONu.iiiii et et eaeans 115

(0] 110 I = L= PP 116

7.7. Adding Behavior t0 ENAPOINTScuuiiiiiiiiiiiiee e 117
Provided AAVICE ClIaSSESciuuiiiiiiiiii ettt e e e e e e e anaeees 118
L= 1V X0 AV o7 T 118

Circuit Breaker ACQVICEoiiuiiiiii ettt 122
Expression Evaluating AdVICecoeiiiiiiiiiiiiiiiie e 123

CUSIOM AQVICE ClASSES . .ievviieeiii et 124
Other Advice Chain EIEMENTScouuiiiiiiiiiiee e 125
AGVISING FIILEIS .eeiiiiii e e e 125
Advising Endpoints Using ANNOLAtIONScccuiiiiiiiiii e e e e e 125
Ordering Advices within an Advice Chainccoooiiiiiiiii e 125

7.8. Logging Channel AdAperoooeeuiiiiiii e 126
S TS VA1 (=T g T 1Y/ = Vg =T = 0 0 = o | 127
8.1, IMX SUPPOIT ettt ettt et et et et e et e e et e et e e e e eaaenns 127
Notification Listening Channel Adapter ... 127
Notification Publishing Channel Adaptercccooviviiiiiii e 128
Attribute Polling Channel Adapter ..o 128
Tree Polling Channel Adapter ... 128
Operation Invoking Channel Adapterccoveiieiiiiciie e 129
Operation Invoking Outbound Gatewaycccuivieiiiiiiiiiiiiee e, 129
MBEAN EXPOITEI ...eeiieii et 130
MBean ODBJECINAMESccvvnieii i e e e e 130
MessageChannel MBean Featurescccvciuiiiiiiiiiiiiiiiineeie e 131

Orderly Shutdown Managed Operationccoveveveinieriiiineeieiiieeeeeiien 132

8.2. MESSAQE HiSIOIY ..uuiiiiiiiiii e 133
Message History Configurationcocuiiiii i 133

8.3. MESSAGE SEOME ...iiiiiiiiiiii it 134
8.4, MEtAUAta STOTE ...ciiiiti it e e et e 135
[dEemMPOLENt RECEIVET ... 136

S T T O a1 o] I =1 L 136
8.6. Orderly SRULdOWN ... 137
V. INtegration ENAPOINTSiiiiiii et et e e et e e et et e e et e e et e e ean e eenas 139
9. Endpoint Quick Reference Table ... 140
O 1Y 1 T o o Lo 144
00 [10T [DT i To] ISP 144
10.2. Inbound Channel Aaperoooeuiiiiiiiie e 144
10.3. Outbound Channel AdAPLeriiiiieiie e e e aes 147
10.4. INDOUNT GAIEWAYuieeiiiiiieiit e ettt et et e e e e e e e et e e e e eaens 148
10.5. OUIDOUNI GAIEWAYceiiiiiieiiiiiee ettt e et 149
10.6. AMQP Backed Message Channelsccooeuiiiiiiiiiiiiciie e e e 150
10.7. AMQP MeSSage HEAUEISc.uiiiiiiiiii et 150

Spring Integration
3.0.1.RELEASE Reference Manual vi

Spring Integration

10.8. AMQP SAMPIES ...uiiiieiiiiei e 151
11. Spring AppliCatiONEVENT SUPPOITiee ittt ea e e 153
11.1. Receiving Spring ApplicatioNEVENTSccouuiiiiiiiiiii e 153
11.2. Sending Spring ApPPlICAtIONEVENLScovuiiiiieii e 153
N =T To B Ao Fo T o) =] PP 155
2 I 10 T [T o) o P 155
12.2. Feed Inbound Channel Adapteroiviiieiiiicie e 155
R R 1 (=T F o] o o] o A U PRSPPI 157
R 0 R 0T [T o) o P 157
13.2. REAAING FilES ...t e e 157
Tal'ING FIlES e et 159
13.3. WHEING TS .o e 161
Generating FileNamEScoouuiiiiiei e 161
Specifying the OULPUL DIFECLOIYiiuiiiii e 162
Dealing with Existing Destination Filesccoooiiiiiiiiiiic e 162
File Outbound Channel Adaptercooveiieiiie e 163
OULDOUNI GAEWAYnivtiiii et et e e e e e e e e eaa e eees 163
13.4. File TranSfOrMErS ... et e e e e e e e e eens 164
O e I e I R A o o] (=] £ 165
I I [10T [U T i [o] o I PP 165
14.2. FTP SESSION FACIOIY ..iiiiiiiiiiiiii et 165
14.3. FTP Inbound Channel AJapteroviiuiiriii e e e 167
14.4. FTP Outbound Channel Adapter ..o 169
14.5. FTP OUthoUNd GAEWAYcceuuiiiiiiiaeiiii ettt e et e et e et e e eeai e e eeri e eeens 171
14.6. FTP SeSSION CaChing ...uucvveiiiiiieii et e e e e eaes 174
14.7. RemMOteFileTemMPIALEcoouniiiii e 174
15, GEMFINE SUPPOM «.otineiiiiii ettt ettt ettt e et e e e et e e e eaa e e eenans 175
L 700 O [1o To [o 1T o I PP 175
15.2. Inbound Channel AdapLerooeu e 175
15.3. Continuous Query Inbound Channel Adaptercooviiiiiiiinniiiiiecei e, 175
15.4. Outbound Channel AdAPLeriiiiiiiii e e e e 176
15.5. GeMIire MESSAQE SEOIEccuuiiiiiit e eeas 177
G o I I S 0] o] oo] S PP PP 179
G700 O [1o To [o 1T o I PP 179
16.2. Http INDOUN GAIEWAYcceeniiiiiiii e 179
16.3. Http OutboUNd GAEWAYcceeviiiiiiii e 180
16.4. HTTP NameSPaCE SUPPOIT ..ueeueentineiieeteeeeeeeeeeeeaeeeaeetaeenaeanseaneeaneeaneenneeneens 181
16.5. TiIMeout HanNAliNgooouuiiiiii ettt e e e eeens 188
16.6. HTTP Proxy CONfigurationcoouuuioiiiiiioiiii e 190
16.7. HTTP Header MapPinNgSeveuieeieeiiieeiiee e e e e e e e e s e et e e et aesaaeeanneeeens 191
16.8. HTTP SAMPIES ..ttt et e e e e e e e ees 192
Multipart HTTP request - RestTemplate (client) and Http Inbound Gateway
ST 0771) IS 192
17, IDBC SUPPOIT ittt ettt e ettt et et et e e e e e e et e e e e anns 194
17.1. Inbound Channel Adapercoouuuii i 194
Polling and TranSaCHiONSiiiiiiiii e ee e e e e e e e e e e ees 195
Max-rows-per-poll versus Max-messages-per-poll ..., 195
17.2. Outbound Channel Adapteroooeuiiiii e 196
ARG T @ 111 oo 18 s [o I 7= 1117 Y 197
17.4. IDBC MESSAQE STOME ...eiiiiiiieiiieite ettt et ettt e e et e e et e e e en e enns 197

Spring Integration
3.0.1.RELEASE Reference Manual Vii

Spring Integration

The Generic JDBC MeSSAQE STOMEcvvvuiiiiieeiiieeeiieeeii e e e e e e e e e e e e 198
Backing Message Channelso 198
Initializing the Databaseuiiiiiiiiiii e 200
Partitioning a MEeSSAgEe STOIEccvvuiiiiiiiiii e e e e e e e e aen 200
17.5. StOred ProCeAUIESc.uuiiiiiii et 201
Supported Databasesooooiiiiiii 201

(@] 01T 8T r=\1 1o o I 201
Common Configuration AttHDULESooiuiiiiii e 202
Common Configuration Sub-Elements ... 203
Defining Parameter SOUICESccuuiiiiiiiii et e e e e e e e e e aen s 205
Stored Procedure Inbound Channel Adapteroovoeviiiiiiiiiiiiiiic e 206
Stored Procedure Outbound Channel Adaptercooveviiiiiiiiiinieiiii e, 207
Stored Procedure Outbound GatEWaYcceuueeiiiiiiiieiiieeeiiieeineeaneeeieeeaeeens 207
EXAMPIES ... e 208

L8, JPA SUPPOIT ettt ettt ettt 210
18.1. Supported PersistenCe ProVIdErScoouuiiiiiiiiiiiecie e e e 210
18.2. Java IMPIemMENTAtIONco.uuiiieiiii e 211
18.3. NAMESPACE SUPPOIT ..eerieiiieiei ettt e e e e e e e e enes 212
Common XML Namespace Configuration Attributescccooeiviiiiiiiiiiieineennn, 212
Providing JPA QUErY Parametersc..ieiiuiiiiieiiieeie e e 213
Transaction Handlingooovoiiiiii e 214
18.4. Inbound Channel AdapLerooviuiii e e 215
Configuration Parameter ReferencCeco.ov i 216
18.5. Outbound Channel Adaptercooouiiiiiii e 217
USIiNG an ENtity ClIasS ...vuiieiiiiiicii e e e e e e e ean s 217
Using JPA Query Language (JPA QL) ..o 217
USING NatiVE QUETIESuiiiiii ettt ettt ettt e e e e ena e e eeeas 218

L0 LS g o T A F= T a1 To O T 1= = 219
Configuration Parameter ReferencCeo.uiv i 220
18.6. OUIDOUNI GAIEWAYS .. .ceevviieeiiii ettt ettt e e et e et e e 221
Common Configuration Parameterscoeeuieiiiiieie e 222
Updating Outbound GAtEWAYc.uiiiiuniiiiiiiiaiie et e e e ean s 223
Retrieving OutbouNd GAEWAYcoeuvuiiiiiiiieiiiiie et eeeens 224

JPA Outbound Gateway Samplesccoeuiiiiiiiiiiiiiie e 225

TN 1Y IR ST ¥ o] o [0] AP PT PP 227
19.1. Inbound Channel AApLercooiuiii i 227
19.2. Message-Driven Channel Adaptervvviiiiiiiic e 228
19.3. Outbound Channel AdAPLETiiii e 229
19.4. INDOUNI GAIEWAYceiviiieeiiiiie ettt ettt e et e e et e e eebe e eeeees 229
19.5. OUDOUNT GAIEBWAYuivveieieii e i et e e e e e e e e e e e e e et e e eaneaeaes 230
AUNDULE REFEIENCE ... e 232
19.6. Mapping Message Headers to/from JMS MESSAQgec.cvevvvvieinieiiiieriineniineeeen, 233
19.7. Message Conversion, Marshalling and Unmarshallingccoooooiiiiiennnn. 234
19.8. JMS Backed Message Channels ..o 234
19.9. UsSiNg JMS MeSSage SEIECIOISciiiiiiieiiiii et 235
19.10. JMS SAMPIES ..ouiiieieiiii ettt e e e e e 236
20. MaII SUPPOIT <.ttt ettt e e et e e et e et e et e e e e aeen 237
20.1. Mail-Sending Channel Aaptero e 237
20.2. Mail-Receiving Channel Adapterooveuiieiiiieii e e 237
20.3. Mail NameSpaCe SUPPOITuiieiiei et e e e et e eaaeees 238

Spring Integration
3.0.1.RELEASE Reference Manual viii

Spring Integration

20.4. Email Message FilteriNgccouuioiiiiiiiicc e e 241
20.5. Transaction SYNCHroNIZAtIONcc.uiiuiiiiiiii e e 242

21. MONQGODD SUPPOIT ..ottt et e et e e e e een e e 244
P22 I O 1 oo o [T 1 oo PRSP 244
21.2. Connecting t0 MONGODDccuiiiiii e 244
21.3. MONQGODB MESSAJE STOMEuiiiiiiiiiiiitie i 245
21.4. MongoDB Inbound Channel Adapteroveeuiiiiiieiie e 246
21.5. MongoDB Outbound Channel Adapter ... 248

22. REAIS SUPPOIT ...ttt ettt ettt e e e et e e e et e e e aa e e eaans 249
P22 W 1o o U Tox 1 o o PRSP 249
22.2. CoNNECtING 10 REAIScetiiiiiieii e 249
22.3. Messaging With REdiScoouuiiiiiiii e 250
Redis Publish/Subscribe channel ..., 250

Redis Inbound Channel Adapterc.o i 250

Redis Outbound Channel Adapter ... 251

Redis Queue Inbound Channel Adapterco.ovevuiiiiiieii e 252

Redis Queue Outbound Channel Adapterccooooiiiiiiiiiii e 253

Redis Application EVENISiiiiiiiieiiii et 253

22.4. RediS MESSAQE STOMEiiveeiiiieiiiee e e e e e e e e e e e e e et e e e ean s 253
22.5. Redis Metadata StOreccuuiiiiiiiiiii et 254
22.6. RedisStore Inbound Channel Adapterooooieuiiiiiiiiiiiee e 254
22.7. RedisStore Outbound Channel Adaptercoovviiiiiiiiiiiee e, 256

23. RESOUICE SUPPOIT ettt ettt ettt ettt e ettt et e et e et e e et e et e e e e e ea e en e en e e aennns 258
b2 25 T [o1 o o (U] 1T o I PP 258
23.2. Resource Inbound Channel Adapterovvvuiiiiii e e 258

A Y | 10T o] oo APPSR 260
2 T [o1 (o o (U] 1T o I PP 260
24.2. OUBOUNT RMI ..ot e e et e eeeea e e eees 260
24.3. INDOUNA RMI ...ttt e e e e e 260
24.4. RMI NAMESPACE SUPPOIT ...uneerieiiieeet ettt et e et e r e e e e s 260

TS Tl I S X =T o) (=] £ 262
P2 I [0 (o o [FTod 1o o PP UUPTRUPTRN 262
25.2. SFTP SESSION FACIOMY ..oeviiiiiiiiiiee ittt 262
Configuration ProPertieScouuiiiii i e e e e e e e an s 263

25.3. SFTP SeSSioN CaChiNgccuuiiiiiiiiiiiii e 264
25.4. RemMOteFIleTEMPIALEcooveiiiiii e 265
25.5. SFTP Inbound Channel Adapterovevuieiiiiee e e 265
25.6. SFTP Outbound Channel Adapterooouiiiiiiiii e 267
25.7. SFTP OUuthoUNd GAIEWAYcevuiiiiiiiieeiiii ettt e e e et e eeeai e aees 268
25.8. SFTP/IISCH LOGQOING +tuuiviteiiiieiiiiee e et e e e e e e e s e et e e e e e e e e e e e eanneeanaees 271

26. SITEAIM SUPPOIT ..ttt ettt et et e e et et et e et e ea e e e e e e eaaenaennaes 272
b2 0 T [o o (U] 1T o I PP 272
26.2. Reading from SIrEAIMSccuuiiiiii i e e e e e e e e eees 272
26.3. WILING 1O SIrEAIMS ...ttt e e et e et e e e e et eeea e eanaas 272
26.4. Stream NamMESPACE SUPPOIT ...eevnieri et ieiri et e et e et e e e eeens 272
P27V (o o RS TUT o] o o] o A 274
A% T [o1 o o [FTod 1o o PP PP UUPTR PR 274
27.2. Syslog <inbound-channel-adapters>ccoooiiiiiiiii 274
Example Configurationooiiuioiiiiciie e e 274

28. TCP and UDP SUPPOIT ..ttt ettt e e e e et e e e e e et e e et e eanaeeees 276

Spring Integration
3.0.1.RELEASE Reference Manual 4

Spring Integration

P22 I 1o o [T 1 o] o PSP 276
28.2. UDP AGAPLEIS ..ttt ettt et e aaas 276
28.3. TCP CONNECLION FACLOMES ..o.uuiiitiiiiieiieeei et e e e e e e e e e e e e e eanaeees 278
TCP Caching Client Connection FACLOrYcccuvvviiieiiiieiiii e e e e e 281
TCP Failover Client Connection FACIONYocceuiiiiiiiiieiiieee e 281
28.4. TCP CoNNEeCtion INLEICEPLOIS .. .ciiiiiieiiiiii et 281
28.5. TCP CONNECION EVENES ...oiiiuiiiiiiiii e e e e eeees 282
28.6. TCP AGAPLEIS ...ceniiiiieii ettt e e e et e e e et e e et a e e ean e aaes 283
28.7. TCP GABWAYS ...eevuierieieieeti ettt e et ettt e e e et e e e e e e ern s 285
28.8. TCP Message COITElationveeeuiriiiiiiiiee e e e e e e e e e e e 286
OVEIVIBW ..ttt et et e et et e e et e e et a e et e e ean s 286
GALBWAY'S ...ieteetiee ettt ettt 286
Collaborating Outbound and Inbound Channel Adaptersccoevevvvvviiieeinnnnns 287
Transferring HEAUEIS ... e 288
28.9. A NOte ADOUL NIO ... 289
28.10. SSLITLS SUPPOI .uuiiiiieiiee e ee et e et et e aanaeeanas 290
OVBIVIBW ..ttt e e et e et et e e et e e et e e et e eean s 290
GetliNG STAMEA ...t et 290
Advanced TECHNIGQUESccuueiiiii e e e e e eaes 291
28.11. IP Configuration AHDULESiiiuiiiiii e 292
28.12. IP MeSSage HEAUERIScouuiiiiiiii et 299
P22 TR VY110 Ao - o] (=] 300
A I I [o o (U Tod 1o o PSPPSR UPTRN 300
29.2. Twitter OAUth ConfIQUIAtiONcoouuiiiiiiiii e 300
P24 I T LY (= G =10 0] o] = L = P 300
29.4. Twitter INboUNd AAPLEIS ...t e 301
Inbound Message Channel Adapter ..o 302
Direct Inbound Message Channel Adaptercoovviiiiiiiiiiii i 302
Mentions Inbound Message Channel Adaptercoooveiiiiiiiiiiiiiin e 302
Search Inbound Message Channel Adapterccooiiiiiiiiineiiiii e, 302
29.5. Twitter OutbouNd AdAPLErcovveieiiee e 303
Twitter Outbound Update Channel Adapterociviiiiiiiiiiiie e 303
Twitter Outbound Direct Message Channel Adaptercccooveviiiiniiiiiinieeiinnnnn. 303

30. WED SEIVICES SUPPOI .. eeeeiiiiieii ettt e e e e e e e e e et e e eanaeeanees 305
30.1. Outbound Web Service Gat@Waysoeieuiiiiiiiiiie e 305
30.2. Inbound Web Service GateWaySoiieeuuiiiiiiiieeiii et 305
30.3. Web Service NameSpace SUPPOIT ...ccvuueieinieei e i eeieeee e e e e et ae e e e e e eeenns 306
30.4. Outbound URI CoNfigUIatioNcouuiiuniiiiiieii e 307
31. XML Support - Dealing with XML Payloadscccuuiiiiiiiiiiiiiiiiie e 308
13 0 O 1 oo o [T 1 o] o PSP 308
31.2. NAMESPACE SUPPON ...eeeetieeteite et e et e et et e et e et e et e et e et e e e e e e e aeeaeees 308
XPath EXPreSSIONSciiiiiieiiiii et 309
Providing Namespaces (Optional) to XPath EXpressionscccceeeenn.. 309

Using XPath Expressions with Default Namespacesc.c.cccovvvevieiinnnens 310

31.3. Transforming XML Payloadsccouuiiiiiiiiiiiiiiiieceii e 311
Configuring Transformers as BEANSoevvuieviiiiiiiiieii e ee e 311
UnmarshallingTransformer ... 312
MarshallingTranSfOrMErov oo e 312
XsltPayloadTransSformercovueiiiii i e 313
ReSUITIaNSTOMMEIS ... e 313

Spring Integration
3.0.1.RELEASE Reference Manual X

Spring Integration

Namespace Support for XML Transformerscccoovvviiiiiiiiii e 314
Namespace Configuration and ResultTransformersccooooviiiiiiiiienneen, 316

31.4. Transforming XML Messages Using XPathc.ocoiiiiiiiiniiiiiieceee, 317
31.5. SPlitting XML MESSAQES ...vvvuieiiiiiiiieii et et e e e e e et e e e e e e e e e e eaneeeees 318
31.6. Routing XML Messages Using XPathc.ccoiiiiiiiiiiiiie e 319
XML Payload CONVEITETcouuiiiiiiiiiee ettt eeens 321

31.7. XPath Header ENFICRErooiiiiiiii e e 321
31.8. Using the XPath Filter e 322
31.9. #xpath SPEL FUNCHONuiiiiiii et 323
31.10. XML Validating Filtercouuiiiiie e e e e eaa s 324

32, XIMPP SUPPOIT .ttt ettt ettt et et et e et e et e et e e e e e e e e e e aees 325
2205 T [o1 o o (U] 1T o I PP 325
32.2. XMPP CONNECHION oottt e eae s 325
32.3. XIMPP MESSAGES ...euieuieiiiieit ettt ettt et ettt et e e e e e e e a e aans 326
Inbound Message Channel Adapter ..o 326

Outbound Message Channel Adapterovvvviiiiiiiiiiie e 326

32.4. XIMPP PIESEINCE ...ttt ettt ettt e et e e e eaaens 326
Inbound Presence Message Channel Adapterccoovvvveiiiiiiiiiiineciiin e, 327

Outbound Presence Message Channel Adapterccooveviiiiiiiiiiicciiieceeeen, 327

32.5. Advanced ConfIQUIratiONcouuiiiiiiiieei e e 328

VA Yo o 1T oo {1 ST SPP PP UPPPTTRPPPPIN 329
A. Spring Expression Language (SPEL)cvvuiiiiiii e e 330
F N I [a1 (oo [[i To] o U TPPTRUPTRN 330

A.2. SpEL Evaluation Context CUStOMIZationc.uoiviiiiiinieiiiiineeiiii e 330

A.3. SPEL FUNCLIONS ..iitiiii et e e e e e e e e e e eees 331

A4, PrOPEITYACCESSOIS ...etiiiiiii ittt et e ettt et et et e ettt e et e et e ea e e e e e eaneees 332

B. Message PUDBIISNINGc.uuuiiiiii e 334
B.1. Message Publishing Configurationcccoceiiiiiiiiiiii e 334
Annotation-driven approach via @Publisher annotationc...ccooviin 334
XML-based approach via the <publishing-interceptor> elementcc.......... 336
Producing and publishing messages based on a scheduled trigger 338

C. TranSACON SUPPOIT ...ttt ettt e et et e e e et e et e e e e e et e e ean e eanas 340
C.1. Understanding Transactions in Message flowscccooooiiiiiiiiiinciic, 340
Poller Transaction SUPPOITuiiiii e e e e e e eean s 341

C.2. Transaction BOUNANEScoeuuiiiiiieiieei e 342

C.3. Transaction SYNChroNiZationcc.uiieiiiiiiiiiiii e 343

C.4. PSEUAO TraNSACHIONSceevuieiiiiie ettt e et e et e et e e e et e e e eaan s 344

D. Security in SPring INtEQIationcc..oiiiiiii e 346
[200 OO T 1 e To [T o o 346

D.2. SECUNNG ChANNEISoiiiiiici e e e e e e 346

E. Spring Integration SAmPIESo.uiiiiii e 348
S T 11 1 o o (1 T4 1T o I 348

E.2. Where t0 get SAmMPIES ..covuiiiiii e e 348

E.3. Submitting Samples or Sample REqQUESTScoeuiiiiiiiiiii e 348

E.4. SAMPIES SITUCIUIE ...oeeiiiiiiii e et 349

S TS - T o] o] =P 350
LOAN BIOKET ... et 351

The Cafe SAMPIE ... e 355

The XML Messaging SampPleccceuiiiiiiiiiiee e e e e e e 360

e Lo oo B] =11 o] o H ST PTT PPN 361

Spring Integration
3.0.1.RELEASE Reference Manual Xi

Spring Integration

L I 101 (0 To [F o4 o o TSP TSUPPUPPPI 361
F.2. NamMESPACE SUPPOIT . .enieiieiei e ettt et e e e e e e e e en e eannas 361
F.3. Configuring the Task Scheduler ... 362
L (o) G o = U o | T o 363
F.5. ANNOAtION SUPPOIT ...t et e e e e e e e e eaa s 364
F.6. Message Mapping rules and CONVENLIONSooiiiuiiiiiiiiiieiiiie e 366
Y 1141 0] (IS Yot =T =T T 1 PP 366
COMPIEX SCENAIIOS ...ttt et e et et e e et e e e eea s 369

G. AddItIONAl RESOUICESuuiiiiiii ettt et e ettt e e e e e e e e e et e e et e e e eean s 371
G.1. Spring INtegration HOMEoiiiiiiiii e e e e 371
H. Change HiSTOIY ... ittt e et et e e e e e eenns 372
H.1. Changes between 1.0 and 2.0ccouiiiiiiiiiiiiiii e 372
S 1T RS T W]] o o] o (TS 372
Support for the Spring Expression Language (SPEL)coevvviiiiiiiiiinns 372
ConversionService and CONVEIETviiiiiiiiiiiiiee e 372
TaskScheduler and TrgOer ... ovvu v 372
RestTemplate and HttpMessageCONVEIErc..ovveuiiiiiiieiiieiiiieeeieeeis 372
Enterprise Integration Pattern Additionscooviiiiiiiiiiiii e 372
MESSAGE HiISIOIY .vniiiiiiii e e 372

MESSAGE STOIE ...t 373

101 =] ¢ O =T o] G 373

CONLIOI BUS ..eee et e s 373

New Channel Adapters and GateWaysoeveuieiiiiieiiieieiieeeie e 373
TCP/UDP AGAPLEIS ...ttt e et e e aees 373

LI G AN = T o) (= = 373

XIMPP AGAPIEIS ..ottt e e 373
FTP/FTPS AJAPLEIS ...ttt 373

] I SN F=) (= = P 373

FEEA ATAPLEIS ...eeiiii et 374

(@1 1= Ao [1110 o 1PN 374

L] o0 1YY ST o] oL o N 374

Map TranSTOIMEISeii et 374

JSON TranSfOMMEISuiie e ans 374
Serialization TranSfOrMErScooviiiiiiiie e 374
Framework RefaCtoriNgooiuuiiiiii e 374

New Source Control Management and Build Infrastructureccccooeeieinnnnnn. 374

New Spring Integration SAMPIESiiviiiiii e 374
SpringSource Tool Suite Visual Editor for Spring Integrationc.c.ccceeeennen. 374

H.2. Changes between 2.0 and 2.1oouiiiiiiiiiie e 375
NEW COMPONENTS ...ovuiiieiiie i ee e e e e e e e e e et e et e e e e e e e eaeeaaeenaeens 375
JSR-223 SCripting SUPPOIT «.c.uneiieeitee et 375

GEMFIIE SUPPOIT ..t 375

LY@ T ¥ o o e] P 375
MONQODB SUPPOIT ...ttt e e e e e eaas 375

REAIS SUPPOI ...ttt e e 375

Support for Spring's Resource abstractionccccoeeeiviviiiiiiiiciieeceeeann 376

Stored Procedure COMPONENTScouuuiiiiniiiiieiiii e e e 376

XPath and XML Validating Filterccooiiiiiiiiii e, 376

Payload ENFMCREToeeiiii e 376

FTP and SFTP Outbound GateWayscccuuviiiiiieiiiiiiiieieieeeieeeie e 377

Spring Integration
3.0.1.RELEASE Reference Manual Xii

Spring Integration

FTP Session Cachingcccuiiiiiiiiiiiciie e 377
Framework RefaCtOriNgooiuuiiiiii e 377
Standardizing Router Configurationcccooveiiiiiniiiiiiinie e 377
XML Schemas updated t0 2.1coouviiiiiiii e e e 377
Source Control Management and Build Infrastructureccoooiiiiiiniinn. 378
Source Code now hosted on Githubcccooiiiiii 378
Improved Source Code Visibility with Sonarccooovviiiiviicin e, 378

NEW SAMPIES ..ttt et e e e e een s 378
H.3. Changes between 2.1 and 2.2c.oiiiiiiiiiiii e 379
NEW COMPONENTS ...ovuiiteiiie it ee et e e e e e e e et e et e e e e e e e e e eaeenaeens 379
RedisStore Inbound and Outbound Channel Adaptersc...cccoiveeuiiennn. 379
MongoDB Inbound and Outbound Channel Adapterscccccoeeveviinienenn. 379

JPA ENAPOINTS ..ot e e 379
General ChanQES ... e 379
Spring 3.1 Used by Default ... 379
Adding Behavior to ENAPOINtSvviiiiiiiiici e 379
Transaction Synchronization and Pseudo Transactionsccccoeeuuneennn. 380

File Adapter - Improved File Overwrite/Append Handlingcccc.oceee. 380
Reply-Timeout added to more Outbound Gatewaysccccceevevinnevennennnnn. 380
SPriNgG-AMOP L. Lo e 380
JDBC Support - Stored Procedures COMPONENtSccuevevvnieiiineieinneennnns 381
JDBC Support - Outhbound GatEWaYccceuuveviineeiiieieiiieeiieeriiieeaineeaieens 381
JDBC Support - Channel-specific Message Store Implementation 381
Orderly SNULAOWNciiiiiiei e 381

JMS Oubound Gateway IMprovementscc.veveieiiiieeeieeeiiieeeieeeaeeeens 381
0DbjeCt-t0-JSON-traNSTOrMETiieiiiii e 381
HTTP SUPPOIT <ottt 381

3.0.1.RELEASE

Spring Integration
Reference Manual Xiii

Spring Integration

Preface

1 Requirements

This section details the compatible Java and Spring Framewaork versions.

Compatible Java Versions

For Spring Integration 3.0.x, the minimum compatible Java version is Java SE 6. Older versions of
Java will not be supported any longer.

Spring Integration 3.0.x is also compatible with Java SE 7 as well as Java SE 8 (once released).

@ Note

Spring Integration 2.2.x is the last version that is compatible with Java 5 (J2SE 5.0).

Compatible Versions of the Spring Framework

The default dependency used by Spring Integration 3.0.0.RELEASE is Spring Framework 3.2.X.
Generally, Spring Integration 3.0.x is compatible with the following Spring Framework releases:
» Spring Framework 3.1.x

» Spring Framework 3.2.x

e Spring Framework 4.0.x

© Note

Spring Integration 2.2.x is the last version that is compatible with Spring Framework 3.0.x.

2 Code Conventions

The Spring Framework 2.0 introduced support for namespaces, which simplifies the Xml configuration of
the application context, and consequently Spring Integration provides broad namespace support. This
reference guide applies the following conventions for all code examples that use hamespace support:

The int namespace prefix will be used for Spring Integration's core namespace support. Each Spring
Integration adapter type (module) will provide its own namespace, which is configured using the following
convention:

int- followed by the name of the module, e.g. int-twitter, int-stream, ...

Spring Integration
3.0.1.RELEASE Reference Manual Xiv

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.springsource.org/spring-framework

Spring Integration

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns:int="http://ww.springframework. org/schena/integration"
xmns:int-twitter="http://ww. springfranmework. org/schema/integration/twitter"
xm ns:int-streans"http://ww. springfranmework. org/schena/integration/streant
xsi : schemalLocat i on="
http://ww. spri ngfranewor k. or g/ schena/ beans
http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ i nt egrati on
http://ww. spri ngfranewor k. org/ schenma/ i ntegration/spring-integration. xsd
http://ww. springfranework. org/ schena/integration/twtter
http://ww. springframework. org/ schema/integration/twi tter/spring-integration-
twitter. xsd
http://ww. springfranework. org/ schena/integration/stream
http://ww. springframework. org/ schema/ i nt egrati on/ strean spring-integration-
stream xsd" >

</ beans>

For a detailed explanation regarding Spring Integration's namespace support see Section F.2,
“Namespace Support”.

@ Note

Please note that the namespace prefix can be freely chosen. You may even choose not to use any
namespace prefixes at all. Therefore, apply the convention that suits your application needs best.
Be aware, though, that SpringSource Tool Suite™ (STS) uses the same namespace conventions
for Spring Integration as used in this reference guide.

Spring Integration
3.0.1.RELEASE Reference Manual XV

Part I. What's new?

For those who are already familiar with Spring Integration, this chapter provides a brief overview of the
new features of version 3.0. If you are interested in the changes and features, that were introduced in
earlier versions, please see chapter: Appendix H, Change History

Spring Integration

1. What's new in Spring Integration 3.0?

This chapter provides an overview of the new features and improvements that have been introduced
with Spring Integration 3.0. If you are interested in more details, please see the Issue Tracker tickets
that were resolved as part of the 3.0 development process.

1.1 New Components

HTTP Request Mapping

The HTTP module now provides powerful Request Mapping support for Inbound Endpoints. Class
Uri Pat hHandl er Mappi ng was replaced by | nt egr ati onRequest Mappi ngHandl er Mappi ng,
which is registered under the bean name i ntegrati onRequest Mappi nhgHandl er Mappi ng
in the application context. Upon parsing of the HTTP Inbound Endpoint, a new
I nt egr ati onRequest Mappi ngHandl er Mappi ng bean is either registered or an existing bean
is being reused. To achieve flexible Request Mapping configuration, Spring Integration provides
the <request - mappi ng/ > sub-element for the <htt p: i nbound- channel - adapt er/ > and the
<ht t p: i nbound- gat eway/ >. Both HTTP Inbound Endpoints are now fully based on the Request
Mapping infrastructure that was introduced with Spring MVC 3.1. For example, multiple paths are
supported on a single inbound endpoint. For more information see Section 16.4, “HTTP Namespace
Support”.

Spring Expression Language (SpEL) Configuration

Anewl nt egrati onEval uati onCont ext Fact or yBean is provided to allow configuration of custom
Pr opert yAccessor s and functions for use in SpEL expressions throughout the framework. For more
information see Appendix A, Spring Expression Language (SpEL).

SpEL Functions Support

To customize the SpEL Eval uati onCont ext with static Met hod functions, the new <spel -
functi on/ > component is introduced. Two built-in functions are also provided (#j sonPat h and
#xpat h). For more information see Section A.3, “SpEL Functions”.

SpEL PropertyAccessors Support

To customize the SpEL Eval uati onCont ext with PropertyAccessor implementations the new
<spel - property-accessors/ > component is introduced. For more information see Section A.4,
“PropertyAccessors”.

Redis: New Components

A new Redis-based Met adat aSt or e implementation has been added. The Redi sMet adat aSt or e
can be used to maintain state of a Met adat aSt ore across application restarts. This new
Met adat aSt or e implementation can be used with adapters such as:

» Twitter Inbound Adapters
* Feed Inbound Channel Adapter

New queue-based components have been added. The <i nt -redi s: queue- i nbound- channel -
adapter/> and the <int-redis:queue-out bound-channel -adapter/> components are
provided to perform 'right pop' and 'left push' operations on a Redis List, respectively.

Spring Integration
3.0.1.RELEASE Reference Manual 2

http://docs.spring.io/spring-integration/docs/latest-ga/api/org/springframework/integration/store/MetadataStore.html

Spring Integration

For more information see Chapter 22, Redis Support.

Header Channel Registry

It is now possible to instruct the framework to store reply and error channels in a registry for later
resolution. This is useful for cases where the r epl yChannel or error Channel might be lost; for
example when serializing a message. See the section called “Header Enricher” for more information.

MongoDB support: New ConfigurableMongoDbMessageStore

In addition to the existing eMbngoDbMessageSt or e, a new Conf i gur abl eMongoDbMessageSt or e
has been introduced. This provides a more robust and flexible implementation of MessageSt or e for
MongoDB. It does not have backward compatibility, with the existing store, but it is recommended to
use it for new applications. Existing applications can use it, but messages in the old store will not be
available. See Chapter 21, MongoDb Support for more information.

Syslog Support

Building on the 2.2 Sysl ogToMapTr ansf or ner Spring Integration 3.0 now introduces UDP and TCP
inbound channel adapters especially tailored for receiving SYSLOG messages. For more information,
see Chapter 27, Syslog Support.

‘Tail' Support

File 'tail'ing inbound channel adapters are now provided to generate messages when lines are added
to the end of text files; see the section called “Tail'ing Files”.

JMX Support

* Anew<int-jnx:tree-polling-channel - adapt er/ >is provided; this adapter queries the IMX
MBean tree and sends a message with a payload that is the graph of objects that matches the query.
By default the MBeans are mapped to primitives and simple Objects like Map, List and arrays -
permitting simple transformation, for example, to JSON.

e The IntegrationMBeanExporter now allows the configuration of a custom
oj ect Nami ngSt r at egy using the nam ng- st r at egy attribute.

For more information, see Section 8.1, “JMX Support”.
TCP/IP Connection Events and Connection Management

TcpConnecti ons now emit Appli cati onEvents (specifically TcpConnecti onEvents) when
connections are opened, closed, or an exception occurs. This allows applications to be informed of
changes to TCP connections using the normal Spring Appl i cat i onLi st ener mechanism.

Abst ract TcpConnecti on has been renamed TcpConnecti onSupport; custom connections
that are subclasses of this class, can use its methods to publish
events. Similarly, Abstract TcpConnecti onl nt er cept or has been renamed to
TcpConnect i onl nt er cept or Support.

In addition, a new <int-ip:tcp-connection-event-inbound-channel -adapter/> is
provided; by default, this adapter sends all TcpConnect i onEvent s to a Channel .

Spring Integration
3.0.1.RELEASE Reference Manual 3

Spring Integration

Further, the TCP Connection Factories, nhow provide a new method get OpenConnecti onl ds(),
which returns a list of identifiers for all open connections; this allows applications, for example, to
broadcast to all open connections.

Finally, the connection factories also provide a new method cl oseConnection(String
connect i onl d) which allows applications to explicitly close a connection using its ID.

For more information see Section 28.5, “TCP Connection Events”.

Inbound Channel Adapter Script Support

The <i nt: i nbound- channel - adapt er/ > now supports <expr essi on/ > and <scri pt/ > sub-
elements to create a MessageSour ce; see the section called “Channel Adapter Expressions and
Scripts”.

Content Enricher: Headers Enrichment Support

The Content Enricher now provides configuration for <header / > sub-elements, to enrich the outbound
Message with headers based on the reply Message from the underlying message flow. For more
information see the section called “Payload Enricher”.

1.2 General Changes

Message ID Generation

Previously, message ids were generated using the JDK UUI D. r andonJUl D() method. With this
release, the default mechanism has been changed to use a more efficient algorithm which is significantly
faster. In addition, the ability to change the strategy used to generate message ids has been added. For
more information see the section called “Message ID Generation”.

<gateway> Changes

* Itis now possible to set common headers across all gateway methods, and more options are provided
for adding, to the message, information about which method was invoked.

« Itis now possible to entirely customize the way that gateway method calls are mapped to messages.

e The Gat ewayMet hodMet adat a is now public class and it makes possible flexibly to configure the
Gat ewayPr oxyFact or yBean programmatically from Java code.

For more information see Section 7.2, “Messaging Gateways”.

HTTP Endpoint Changes

e Outbound Endpoint 'encode-uri’ - <htt p: out bound- gat eway/ > and <htt p: out bound-
channel - adapt er / > now provide an encode- uri attribute to allow disabling the encoding of the
URI object before sending the request.

e Inbound Endpoint 'merge-with-default-converters' - <htt p:inbound-gateway/> and
<htt p: i nbound- channel - adapter/> now have a nerge-w th-default-converters
attribute to include the list of default Htt pMessageConverters after the custom message
converters.

Spring Integration
3.0.1.RELEASE Reference Manual 4

Spring Integration

* 'If-(Un)Modified-Since'’ HTTP Headers - previously, 'If-Modified-Since' and 'lIf-Unmodified-
Since' HTTP headers were incorrectly processed within from/to HTTP headers
mapping in the Default Htt pHeader Mapper. Now, in addition correcting that issue,
Def aul t Ht t pHeader Mapper provides date parsing from formatted strings for any HTTP headers
that accept date-time values.

* Inbound Endpoint Expression Variables - In addition to the existing #requestParams and
#pathVariables, the <htt p: i nbound- gat eway/ > and <htt p: i nbound- channel - adapt er/ >
now support additional useful variables: #matrixVariables, #requestAttributes, #requestHeaders and
#cookies. These variables are available in both payload and header expressions.

e Outbound Endpoint 'uri-variables-expression' - HTTP Outbound Endpoints now support the uri -
vari abl es- expr essi on attribute to specify an Expr essi on to evaluate a Map for all URI variable
placeholders within URL template. This allows selection of a different map of expressions based on
the outgoing message.

For more information see Chapter 16, HTTP Support.

Jackson Support (JSON)

» A new abstraction for JSON conversion has been introduced. Implementations for Jackson 1.x and
Jackson 2 are currently provided, with the version being determined by presence on the classpath.
Previously, only Jackson 1.x was supported.

» The bj ect TodsonTr ansf or mer and JsonToObj ect Tr ansf or mer now emit/consume headers
containing type information.

For more information, see 'JSON Transformers' in Section 6.1, “Transformer”.
Chain Elements 'id" Attribute

Previously, the id attribute for elements within a <chai n> was ignored and, in some cases, disallowed.
Now, the id attribute is allowed for all elements within a <chai n>. The bean names of chain elements
is a combination of the surrounding chain's id and the id of the element itself. For example: 'fooChain
$child.fooTransformer.handler'. For more information see Section 5.6, “Message Handler Chain”.

Aggregator 'empty-group-min-timeout' property

The Abstract Correl ati ngMessageHandl er provides a new property enpty-group- ni n-
ti meout to allow empty group expiry to run on a longer schedule than expiring partial groups. Empty
groups will not be removed from the MessageSt or e until they have not been modified for at least this
number of milliseconds. For more information see the section called “Configuring an Aggregator”.

Persistent File List Filters (file, (S)FTP)

New Fi | eLi st Fi | t er s that use a persistent Met adat aSt or e are now available. These can be used
to prevent duplicate files after a system restart. See Section 13.2, “Reading Files”, Section 14.3, “FTP
Inbound Channel Adapter”, and Section 25.5, “SFTP Inbound Channel Adapter” for more information.

Scripting Support: Variables Changes

Anewvar i abl es attribute has been introduced for scripting components. In addition, variable bindings
are now allowed for inline scripts. See Section 7.6, “Groovy support” and Section 7.5, “Scripting support”
for more information.

Spring Integration
3.0.1.RELEASE Reference Manual 5

Spring Integration

Direct Channel Load Balancing configuration

Previously, when configuring LoadBal anci ngSt r at egy on the channel's 'dispatcher' sub-element,
the only available option was to use a pre-defined enumeration of values which did not allow one to
set a custom implementation of the LoadBal anci ngSt r at egy. You can now use | oad- bal ancer -
r ef to provide a reference to a custom implementation of the LoadBal anci ngSt r at egy. For more
information see the section called “DirectChannel”.

PublishSubscribeChannel Behavior

Previously, sending to a <publish-subscribe-channel/> that had no subscribers would return a f al se
result. If used in conjunction with a Messagi ngTenpl at e, this would result in an exception being
thrown. Now, the Publ i shSubscri beChannel has a property m nSubscri ber s (default 0). If the
message is sent to at least the minimum number of subscribers, the send is deemed to be successful
(even if zero). If an application is expecting to get an exception under these conditions, set the minimum
subscribers to at least 1.

FTP, SFTP and FTPS Changes

The FTP, SFTP and FTPS endpoints no longer cache sessions by default

The deprecated cached- sessi ons attribute has been removed from all endpoints. Previously, the
embedded caching mechanism controlled by this attribute's value didn't provide a way to limit the size
of the cache, which could grow indefinitely. The Cachi ngConnecti onFact ory was introduced in
release 2.1 and it became the preferred (and is now the only) way to cache sessions.

The Cachi ngConnect i onFact ory now provides a new method r eset Cache() . This immediately
closes idle sessions and causes in-use sessions to be closed as and when they are returned to the
cache.

The Defaul t Sft pSessi onFactory (in conjunction with a Cachi ngSessi onFact ory) now
supports multiplexing channels over a single SSH connection (SFTP Only).

FTP, SFTP and FTPS Inbound Adapters

Previously, there was no way to override the default filter used to process files retrieved
from a remote server. The filter attribute determines which files are retrieved but the
Fi | eReadi ngMessageSour ce uses an Accept OnceFi | eLi st Fi | t er. This means that if a new
copy of a file is retrieved, with the same name as a previously copied file, no message was sent from
the adapter.

With this release, a new attribute | ocal - fi | t er allows you to override the default filter, for example
with an Accept Al | Fi | eLi st Fi | t er, or some other custom filter.

For users that wish the behavior of the Accept OnceFi | eLi st Fi | t er to be maintained across JVM
executions, a custom filter that retains state, perhaps on the file system, can now be configured.

Inbound Channel Adapters now support the pr eser ve-t i nest anp attribute, which sets the local file
modified timestamp to the timestamp from the server (default false).

FTP, SFTP and FTPS Gateways

» The gateways now support the mv command, enabling the renaming of remote files.

Spring Integration
3.0.1.RELEASE Reference Manual 6

Spring Integration

» The gateways now support recursive Is and mget commands, enabling the retrieval of a remote file
tree.

» The gateways now support put and mput commands, enabling sending file(s) to the remote server.

e Thel ocal -fil enanme- gener at or - expr essi on attribute is now supported, enabling the naming
of local files during retrieval. By default, the same name as the remote file is used.

» The | ocal - di rect ory-expressi on attribute is now supported, enabling the naming of local
directories during retrieval based on the remote directory.

Remote File Template

A new higher-level abstraction (RenoteFil eTenplate) is provided over the Session
implementations used by the FTP and SFTP modules. While it is used internally by endpoints, this
abstraction can also be used programmatically and, like all Spring * Tenpl at e implementations, reliably
closes the underlying session while allowing low level access to the session when needed.

For more information, see Chapter 14, FTP/FTPS Adapters and Chapter 25, SFTP Adapters.
‘requires-reply' Attribute for Outbound Gateways

All Outbound Gateways (e.g. <j dbc: out bound- gat eway/ > or <j ns: out bound- gat eway/ >) are
designed for ‘request-reply' scenarios. A response is expected from the external service and will be
published to the r epl y- channel , or the r epl yChannel message header. However, there are some
cases where the external system might not always return aresult, e.g. a <j dbc: out bound- gat eway/
>, when a SELECT ends with an empty Resul t Set or, say, a Web Service is One-Way. An option is
therefore needed to configure whether or not a reply is required. For this purpose, the requires-reply
attribute has been introduced for Outbound Gateway components. In most cases, the default value for
requires-reply is t r ue and, if there is not any result, a Repl yRequi r edExcept i on will be thrown.
Changing the value to f al se means that, if an external service doesn't return anything, the message-
flow will end at that point, similar to an Outbound Channel Adapter.

© Note

The WebService outbound gateway has an additional attribute i gnor e- enpt y-r esponses;
this is used to treat an empty String response as if no response was received. It is true by default
but can be set to false to allow the application to receive an empty String in the reply message
payload. When the attribute is true an empty string is treated as no response for the purposes
of the requires-reply attribute. requires-reply is false by default for the WebService outbound
gateway.

Note, the requi resReply property was previously present in the
Abst ract Repl yPr oduci ngMessageHandl er but set to fal se, and there wasn't any way to
configure it on Outbound Gateways using the XML namespace.

© Important
Previously, a gateway receiving no reply would silently end the flow (with a DEBUG log message);
with this change an exception will now be thrown by default by most gateways. To revert to the
previous behavior, set r equi r es-r epl y to false.

AMQP Outbound Gateway Header Mapping

Previously, the <int-amgp:outbound-gateway/> mapped headers before invoking the message
converter, and the converter could overwrite headers such as cont ent -t ype. The outbound adapter

Spring Integration
3.0.1.RELEASE Reference Manual 7

Spring Integration

maps the headers after the conversion, which means headers like cont ent - t ype from the outbound
Message (if present) are used.

Starting with this release, the gateway now maps the headers after the message conversion, consistent
with the adapter. If your application relies on the previous behavior (where the converter's headers
overrode the mapped headers), you either need to filter those headers (before the message reaches
the gateway) or set them appropriately. The headers affected by the Si npl eMessageConverter are
cont ent -t ype and cont ent - encodi ng. Custom message converters may set other headers.

Stored Procedure Components Improvements

For more complex database-specific types, not supported by the standard
Cal | abl eSt at enent . get bj ect method, 2 new additional attributes were introduced to the <sq|l -
par aret er - def i ni ti on/ > element with OUT-direction:

* type-name
* return-type

The row mapper attribute of the Stored Procedure Inbound Channel Adapter <ret urni ng-
resul t set/ > sub-element now supports a reference to a Rowvapper bean definition. Previously, it
contained just a class name (which is still supported).

For more information see Section 17.5, “Stored Procedures”.
Web Service Outbound URI Configuration

Web Service Outbound Gateway 'uri' attribute now supports <uri - vari abl e/ > substitution for all
URI-schemes supported by Spring Web Services. For more information see Section 30.4, “Outbound
URI Configuration”.

Redis Adapter Changes

» The Redis Inbound Channel Adapter can now use a nul | value for seri al i zer property, with the
raw data being the message payload.

e The Redis Outbound Channel Adapter now has the t opi c- expr essi on property to determine the
Redis topic against the Message at runtime.

» The Redis Inbound Channel Adapter, in addition to the existing t opi cs attribute, now has thet opi c-
pat t er ns attribute.

For more information, see Chapter 22, Redis Support.
Advising Filters

Previously, when a <filter/> had a <request-handler-advice-chain/>, the discard action was all performed
within the scope of the advice chain (including any downstream flow on the di scar d- channel). The
filter element now has an attribute di scar d-wi t hi n- advi ce (default t r ue), to allow the discard
action to be performed after the advice chain completes. See the section called “Advising Filters”.

Advising Endpoints using Annotations

Request Handler Advice Chains can now be configured using annotations. See the section called
“Advising Endpoints Using Annotations”.

Spring Integration
3.0.1.RELEASE Reference Manual 8

Spring Integration

ObjectToStringTransformer Improvements

This transformer now correctly transforms byte[] and char[] payloads to String. For more
information see Section 6.1, “Transformer”.

JPA Support Changes

Payloads to persist or merge can now be of type j ava. | ang. | t er abl e.

In that case, each object returned by the |t er abl e is treated as an entity and persisted or merged
using the underlying Ent i t yManager . NULL values returned by the iterator are ignored.

The JPA adapters now have additional attributes to optionally ‘'flush’ and ‘clear' entities from the
associated persistence context after performing persistence operations.

Retrieving gateways had no mechanism to specify the first record to be retrieved which is a common
use case. The retrieving gateways now support specifying this parameter using a first-result
and first-result-expression attributes to the gateway definition. the section called “Retrieving
Outbound Gateway”.

The JPA retrieving gateway and inbound adapter now have an attribute to specify the maximum number
of results in aresult set as an expression. In addition, the max- r esul t s attribute has been introduced to
replace max- nunber - of - r esul t s, which has been deprecated. max-r esul t s and max-resul t s-
expressi on are used to provide the maximum number of results, or an expression to compute the
maximum number of results, respectively, in the result set.

For more information see Chapter 18, JPA Support.
Delayer: delay expression

Previously, the <del ayer > provided a del ay- header - nane attribute to determine the delay value at
runtime. In complex cases it was necessary to precede the <del ayer > with a <header - enri cher >.
Spring Integration 3.0 introduced the expr essi on attribute and expr essi on sub-element for dynamic
delay determination. The del ay- header - nanme attribute is now deprecated because the header
evaluation can be specified in the expr essi on. In addition, the i gnor e- expressi on-fail ures
was introduced to control the behavior when an expression evaluation fails. For more information see
Section 7.4, “Delayer”.

JDBC Message Store Improvements

Spring Integration 3.0 adds a new set of DDL scripts for MySQL version 5.6.4 and higher. Now MySQL
supports fractional seconds and is thus improving the FIFO ordering when polling from a MySQL-based
Message Store. For more information, please see the section called “The Generic JDBC Message
Store”.

IMAP Idle Connection Exceptions

Previously, if an IMAP idle connection failed, it was logged but there was no mechanism to
inform an application. Such exceptions now generate Appl i cat i onEvent s. Applications can obtain
these events using an <i nt - event : i nbound- channel - adapt er >orany Appl i cati onLi st ener
configured to receive an | mapl dl eExcepti onEvent or one of its super classes.

Spring Integration
3.0.1.RELEASE Reference Manual 9

http://docs.oracle.com/javase/7/docs/api/java/lang/Iterable.html

Spring Integration

Message Headers and TCP

The TCP connection factories now enable the configuration of a flexible mechanism to transfer selected
headers (as well as the payload) over TCP. A new TcpMessageMapper enables the selection of the
headers, and an appropriate (de)serializer needs to be configured to write the resulting Map to the
TCP stream. A MapJsonSeri al i zer is provided as a convenient mechanism to transfer headers and
payload over TCP. For more information see the section called “Transferring Headers”.

JMS Message Driven Channel Adapter

Previously, when configuring a <nessage- dri ven- channel - adapt er/ >, if you wished to use a
specific TaskExecut or, it was necessary to declare a container bean and provide it to the adapter
using the cont ai ner attribute. The t ask- execut or is now provided, allowing it to be set directly on
the adapter. This is in addition to several other container attributes that were already available.

RMI Inbound Gateway

The RMI Inbound Gateway now supports an err or - channel attribute. See Section 24.3, “Inbound
RMI”,

XsltPayloadTransformer

You can now specify the transformer factory class name using the t r ansf or ner - f act ory- cl ass
attribute. See the section called “XsltPayloadTransformer”

Spring Integration
3.0.1.RELEASE Reference Manual 10

Part Il. Overview of Spring
Integration Framework

Spring Integration provides an extension of the Spring programming model to support the well-known
Enterprise Integration Patterns. It enables lightweight messaging within Spring-based applications and
supports integration with external systems via declarative adapters. Those adapters provide a higher-
level of abstraction over Spring's support for remoting, messaging, and scheduling. Spring Integration's
primary goal is to provide a simple model for building enterprise integration solutions while maintaining
the separation of concerns that is essential for producing maintainable, testable code.

http://www.eaipatterns.com/

Spring Integration

2. Spring Integration Overview

2.1 Background

One of the key themes of the Spring Framework is inversion of control. In its broadest sense, this means
that the framework handles responsibilities on behalf of the components that are managed within its
context. The components themselves are simplified since they are relieved of those responsibilities. For
example, dependency injection relieves the components of the responsibility of locating or creating their
dependencies. Likewise, aspect-oriented programming relieves business components of generic cross-
cutting concerns by modularizing them into reusable aspects. In each case, the end result is a system
that is easier to test, understand, maintain, and extend.

Furthermore, the Spring framework and portfolio provide a comprehensive programming model for
building enterprise applications. Developers benefit from the consistency of this model and especially
the fact that it is based upon well-established best practices such as programming to interfaces and
favoring composition over inheritance. Spring's simplified abstractions and powerful support libraries
boost developer productivity while simultaneously increasing the level of testability and portability.

Spring Integration is motivated by these same goals and principles. It extends the Spring programming
model into the messaging domain and builds upon Spring's existing enterprise integration support to
provide an even higher level of abstraction. It supports message-driven architectures where inversion of
control applies to runtime concerns, such as when certain business logic should execute and where the
response should be sent. It supports routing and transformation of messages so that different transports
and different data formats can be integrated without impacting testability. In other words, the messaging
and integration concerns are handled by the framework, so business components are further isolated
from the infrastructure and developers are relieved of complex integration responsibilities.

As an extension of the Spring programming model, Spring Integration provides a wide variety of
configuration options including annotations, XML with namespace support, XML with generic "bean”
elements, and of course direct usage of the underlying API. That API is based upon well-defined
strategy interfaces and non-invasive, delegating adapters. Spring Integration's design is inspired by the
recognition of a strong affinity between common patterns within Spring and the well-known Enterprise
Integration Patterns as described in the book of the same name by Gregor Hohpe and Bobby Woolf
(Addison Wesley, 2004). Developers who have read that book should be immediately comfortable with
the Spring Integration concepts and terminology.

2.2 Goals and Principles

Spring Integration is motivated by the following goals:

» Provide a simple model for implementing complex enterprise integration solutions.
 Facilitate asynchronous, message-driven behavior within a Spring-based application.
» Promote intuitive, incremental adoption for existing Spring users.

Spring Integration is guided by the following principles:

» Components should be loosely coupled for modularity and testability.

» The framework should enforce separation of concerns between business logic and integration logic.

Spring Integration
3.0.1.RELEASE Reference Manual 12

http://www.eaipatterns.com
http://www.eaipatterns.com

Spring Integration

» Extension points should be abstract in nature but within well-defined boundaries to promote reuse
and portability.

2.3 Main Components

From the vertical perspective, a layered architecture facilitates separation of concerns, and interface-
based contracts between layers promote loose coupling. Spring-based applications are typically
designed this way, and the Spring framework and portfolio provide a strong foundation for following
this best practice for the full-stack of an enterprise application. Message-driven architectures add a
horizontal perspective, yet these same goals are still relevant. Just as "layered architecture" is an
extremely generic and abstract paradigm, messaging systems typically follow the similarly abstract
"pipes-and-filters" model. The "filters" represent any component that is capable of producing and/or
consuming messages, and the "pipes" transport the messages between filters so that the components
themselves remain loosely-coupled. It is important to note that these two high-level paradigms are not
mutually exclusive. The underlying messaging infrastructure that supports the "pipes" should still be
encapsulated in a layer whose contracts are defined as interfaces. Likewise, the "filters" themselves
would typically be managed within a layer that is logically above the application's service layer,
interacting with those services through interfaces much in the same way that a web-tier would.

Message

In Spring Integration, a Message is a generic wrapper for any Java object combined with metadata used
by the framework while handling that object. It consists of a payload and headers. The payload can be
of any type and the headers hold commonly required information such as id, timestamp, correlation id,
and return address. Headers are also used for passing values to and from connected transports. For
example, when creating a Message from a received File, the file name may be stored in a header to
be accessed by downstream components. Likewise, if a Message's content is ultimately going to be
sent by an outbound Mail adapter, the various properties (to, from, cc, subject, etc.) may be configured
as Message header values by an upstream component. Developers can also store any arbitrary key-
value pairs in the headers.

Message

Header

Payload

Message Channel

A Message Channel represents the "pipe" of a pipes-and-filters architecture. Producers send Messages
to a channel, and consumers receive Messages from a channel. The Message Channel therefore
decouples the messaging components, and also provides a convenient point for interception and
monitoring of Messages.

Spring Integration
3.0.1.RELEASE Reference Manual 13

Spring Integration

send{Message) . O receive()
Producer -

Consumer

Message Channel

A Message Channel may follow either Point-to-Point or Publish/Subscribe semantics. With a Point-to-
Point channel, at most one consumer can receive each Message sent to the channel. Publish/Subscribe
channels, on the other hand, will attempt to broadcast each Message to all of its subscribers. Spring
Integration supports both of these.

Whereas "Point-to-Point" and "Publish/Subscribe" define the two options for how many consumers will
ultimately receive each Message, there is another important consideration: should the channel buffer
messages? In Spring Integration, Pollable Channels are capable of buffering Messages within a queue.
The advantage of buffering is that it allows for throttling the inbound Messages and thereby prevents
overloading a consumer. However, as the name suggests, this also adds some complexity, since a
consumer can only receive the Messages from such a channel if a poller is configured. On the other
hand, a consumer connected to a Subscribable Channel is simply Message-driven. The variety of
channel implementations available in Spring Integration will be discussed in detail in the section called
“Message Channel Implementations”.

Message Endpoint

One of the primary goals of Spring Integration is to simplify the development of enterprise integration
solutions through inversion of control. This means that you should not have to implement consumers
and producers directly, and you should not even have to build Messages and invoke send or receive
operations on a Message Channel. Instead, you should be able to focus on your specific domain model
with an implementation based on plain Objects. Then, by providing declarative configuration, you can
"connect" your domain-specific code to the messaging infrastructure provided by Spring Integration. The
components responsible for these connections are Message Endpoints. This does not mean that you will
necessarily connect your existing application code directly. Any real-world enterprise integration solution
will require some amount of code focused upon integration concerns such as routing and transformation.
The important thing is to achieve separation of concerns between such integration logic and business
logic. In other words, as with the Model-View-Controller paradigm for web applications, the goal should
be to provide a thin but dedicated layer that translates inbound requests into service layer invocations,
and then translates service layer return values into outbound replies. The next section will provide an
overview of the Message Endpoint types that handle these responsibilities, and in upcoming chapters,
you will see how Spring Integration's declarative configuration options provide a non-invasive way to
use each of these.

2.4 Message Endpoints

A Message Endpoint represents the "filter" of a pipes-and-filters architecture. As mentioned above, the
endpoint's primary role is to connect application code to the messaging framework and to do so in a non-
invasive manner. In other words, the application code should ideally have no awareness of the Message
objects or the Message Channels. This is similar to the role of a Controller in the MVC paradigm. Just as
a Controller handles HTTP requests, the Message Endpoint handles Messages. Just as Controllers are
mapped to URL patterns, Message Endpoints are mapped to Message Channels. The goal is the same
in both cases: isolate application code from the infrastructure. These concepts are discussed at length
along with all of the patterns that follow in the Enterprise Integration Patterns book. Here, we provide

Spring Integration
3.0.1.RELEASE Reference Manual 14

http://www.eaipatterns.com

Spring Integration

only a high-level description of the main endpoint types supported by Spring Integration and their roles.
The chapters that follow will elaborate and provide sample code as well as configuration examples.

Transformer

A Message Transformer is responsible for converting a Message's content or structure and returning
the modified Message. Probably the most common type of transformer is one that converts the payload
of the Message from one format to another (e.g. from XML Document to java.lang.String). Similarly, a
transformer may be used to add, remove, or modify the Message's header values.

Filter

A Message Filter determines whether a Message should be passed to an output channel at all. This
simply requires a boolean test method that may check for a particular payload content type, a property
value, the presence of a header, etc. If the Message is accepted, it is sent to the output channel, but if
not it will be dropped (or for a more severe implementation, an Exception could be thrown). Message
Filters are often used in conjunction with a Publish Subscribe channel, where multiple consumers may
receive the same Message and use the filter to narrow down the set of Messages to be processed
based on some criteria.

© Note

Be careful not to confuse the generic use of "filter" within the Pipes-and-Filters architectural
pattern with this specific endpoint type that selectively narrows down the Messages flowing
between two channels. The Pipes-and-Filters concept of "filter" matches more closely with Spring
Integration's Message Endpoint: any component that can be connected to Message Channel(s)
in order to send and/or receive Messages.

Router

A Message Router is responsible for deciding what channel or channels should receive the Message
next (if any). Typically the decision is based upon the Message's content and/or metadata available in the
Message Headers. A Message Router is often used as a dynamic alternative to a statically configured
output channel on a Service Activator or other endpoint capable of sending reply Messages. Likewise,
a Message Router provides a proactive alternative to the reactive Message Filters used by multiple

subscribers as described above.

. Message Channel A
e Router
Channel B

Splitter

A Splitter is another type of Message Endpoint whose responsibility is to accept a Message from its input
channel, split that Message into multiple Messages, and then send each of those to its output channel.
This is typically used for dividing a "composite" payload object into a group of Messages containing the
sub-divided payloads.

Spring Integration
3.0.1.RELEASE Reference Manual 15

Spring Integration

Aggregator

Basically a mirror-image of the Splitter, the Aggregator is a type of Message Endpoint that receives
multiple Messages and combines them into a single Message. In fact, Aggregators are often
downstream consumers in a pipeline that includes a Splitter. Technically, the Aggregator is more
complex than a Splitter, because it is required to maintain state (the Messages to-be-aggregated), to
decide when the complete group of Messages is available, and to timeout if necessary. Furthermore, in
case of a timeout, the Aggregator needs to know whether to send the partial results or to discard them
to a separate channel. Spring Integration provides a Conpl et i onSt r at egy as well as configurable
settings for timeout, whether to send partial results upon timeout, and the discard channel.

Service Activator

A Service Activator is a generic endpoint for connecting a service instance to the messaging system.
The input Message Channel must be configured, and if the service method to be invoked is capable of
returning a value, an output Message Channel may also be provided.

© Note

The output channel is optional, since each Message may also provide its own 'Return Address'
header. This same rule applies for all consumer endpoints.

The Service Activator invokes an operation on some service object to process the request Message,
extracting the request Message's payload and converting if necessary (if the method does not expect
a Message-typed parameter). Whenever the service object's method returns a value, that return value
will likewise be converted to a reply Message if necessary (if it's not already a Message). That reply
Message is sent to the output channel. If no output channel has been configured, then the reply will be
sent to the channel specified in the Message's "return address" if available.

handle(Message) input)
Meszage

- - - —m o T — -
Output

Message

Service
Activator

Message
Handler

Input
Channel

Output
Channel

A request-reply "Service Activator" endpoint connects a target
object's method to input and output Message Channels.

Channel Adapter

A Channel Adapter is an endpoint that connects a Message Channel to some other system or transport.
Channel Adapters may be either inbound or outbound. Typically, the Channel Adapter will do some
mapping between the Message and whatever object or resource is received-from or sent-to the other
system (File, HTTP Request, JMS Message, etc). Depending on the transport, the Channel Adapter
may also populate or extract Message header values. Spring Integration provides a number of Channel
Adapters, and they will be described in upcoming chapters.

Spring Integration
3.0.1.RELEASE Reference Manual 16

Spring Integration

E Channel

Adapter

e e
Message

—-

Message
Channel

An inbound "Channel Adapter" endpoint connects a source system to a MessageChannel.

E Channel

Adapter

Message
Channel

[,
| Message |——=| Target

An outbound "Channel Adapter" endpoint connects a MessageChannel to a target system.

3.0.1.RELEASE

Spring Integration
Reference Manual

17

Part Ill. Core Messaging

This section covers all aspects of the core messaging APl in Spring Integration. Here you will learn about
Messages, Message Channels, and Message Endpoints. Many of the Enterprise Integration Patterns
are covered here as well, such as Filters, Routers, Transformers, Service-Activators, Splitters, and
Aggregators. The section also contains material about System Management, including the Control Bus
and Message History support.

Spring Integration

3. Messaging Channels

3.1 Message Channels

While the Message plays the crucial role of encapsulating data, it is the MessageChannel that
decouples message producers from message consumers.

The MessageChannel Interface
Spring Integration's top-level MessageChannel interface is defined as follows.

public interface MessageChannel {
bool ean send(Message nessage);

bool ean send(Message nmessage, |ong tineout);

When sending a message, the return value will be true if the message is sent successfully. If the send
call times out or is interrupted, then it will return false.

PollableChannel

Since Message Channels may or may not buffer Messages (as discussed in the overview), there are
two sub-interfaces defining the buffering (pollable) and non-buffering (subscribable) channel behavior.
Here is the definition of Pol | abl eChannel .

public interface Poll abl eChannel extends MessageChannel {
Message<?> recei ve();

Message<?> recei ve(long timeout);

Similar to the send methods, when receiving a message, the return value will be null in the case of a
timeout or interrupt.

SubscribableChannel

The Subscri babl eChannel base interface is implemented by channels that send Messages directly
to their subscribed MessageHand| er s. Therefore, they do not provide receive methods for polling, but
instead define methods for managing those subscribers:

public interface Subscribabl eChannel extends MessageChannel {
bool ean subscri be(MessageHandl er handl er);

bool ean unsubscri be(MessageHandl er handl er);

Message Channel Implementations

Spring Integration provides several different Message Channel implementations. Each is briefly
described in the sections below.

Spring Integration
3.0.1.RELEASE Reference Manual 19

Spring Integration

PublishSubscribeChannel

The Publ i shSubscri beChannel implementation broadcasts any Message sent to it to all of its
subscribed handlers. This is most often used for sending Event Messages whose primary role
is notification as opposed to Document Messages which are generally intended to be processed
by a single handler. Note that the Publ i shSubscri beChannel is intended for sending only.
Since it broadcasts to its subscribers directly when its send(Message) method is invoked,
consumers cannot poll for Messages (it does not implement Pol | abl eChannel and therefore has no
recei ve() method). Instead, any subscriber must be a MessageHandl er itself, and the subscriber's
handl eMessage(Message) method will be invoked in turn.

Prior to version 3.0, invoking the send method on a Publi shSubscri beChannel that had
no subscribers returned fal se. When used in conjunction with a Messagi ngTenpl ate, a
MessageDel i ver yExcept i on was thrown. Starting with version 3.0, the behavior has changed such
that a send is always considered successful if at least the minimum subscribers are present (and
successfully handle the message). This behavior can be modified by setting the m nSubscri bers
property, which defaults to 0.

© Note

If a TaskExecut or is used, only the presence of the correct number of subscribers is used for
this determination, because the actual handling of the message is performed asynchronously.

QueueChannel

The QueueChannel implementation wraps a queue. Unlike the Publ i shSubscri beChannel , the
QueueChannel has point-to-point semantics. In other words, even if the channel has multiple
consumers, only one of them should receive any Message sent to that channel. It provides a default no-
argument constructor (providing an essentially unbounded capacity of | nt eger . MAX_VALUE) as well
as a constructor that accepts the queue capacity:

publ i ¢ QueueChannel (i nt capacity)

A channel that has not reached its capacity limit will store messages in its internal queue, and the
send() method will return immediately even if no receiver is ready to handle the message. If the queue
has reached capacity, then the sender will block until room is available. Or, if using the send call that
accepts a timeout, it will block until either room is available or the timeout period elapses, whichever
occurs first. Likewise, a receive call will return immediately if a message is available on the queue, but
if the queue is empty, then a receive call may block until either a message is available or the timeout
elapses. In either case, it is possible to force an immediate return regardless of the queue's state by
passing a timeout value of 0. Note however, that calls to the no-arg versions of send() andr ecei ve()
will block indefinitely.

PriorityChannel

Whereas the QueueChannel enforces first-in/first-out (FIFO) ordering, the Pri ori t yChannel is an
alternative implementation that allows for messages to be ordered within the channel based upon a
priority. By default the priority is determined by the 'pri ori t y' header within each message. However,
for custom priority determination logic, a comparator of type Conpar at or <Message<?>> can be
provided to the Pri ori t yChannel 's constructor.

Spring Integration
3.0.1.RELEASE Reference Manual 20

Spring Integration

RendezvousChannel

The RendezvousChannel enables a "direct-handoff* scenario where a sender will block until another
party invokes the channel's recei ve() method or vice-versa. Internally, this implementation is
quite similar to the QueueChannel except that it uses a Synchr onousQueue (a zero-capacity
implementation of Bl ocki ngQueue). This works well in situations where the sender and receiver
are operating in different threads but simply dropping the message in a queue asynchronously is not
appropriate. In other words, with a RendezvousChannel at least the sender knows that some receiver
has accepted the message, whereas with a QueueChannel , the message would have been stored to
the internal queue and potentially never received.

@ Tip

Keep in mind that all of these queue-based channels are storing messages in-memory only
by default. When persistence is required, you can either provide a 'message-store’ attribute
within the 'queue’ element to reference a persistent MessageStore implementation, or you can
replace the local channel with one that is backed by a persistent broker, such as a IMS-backed
channel or Channel Adapter. The latter option allows you to take advantage of any JMS provider's
implementation for message persistence, and it will be discussed in Chapter 19, JMS Support.
However, when buffering in a queue is not necessary, the simplest approach is to rely upon the
Di r ect Channel discussed next.

The RendezvousChannel is also useful for implementing request-reply operations. The sender
can create a temporary, anonymous instance of RendezvousChannel which it then sets as the
'replyChannel' header when building a Message. After sending that Message, the sender can
immediately call receive (optionally providing a timeout value) in order to block while waiting for a reply
Message. This is very similar to the implementation used internally by many of Spring Integration's
request-reply components.

DirectChannel

The DirectChannel has point-to-point semantics but otherwise is more similar to the
Publ i shSubscri beChannel than any of the queue-based channel implementations described
above. It implements the Subscri babl eChannel interface instead of the Pol | abl eChannel
interface, so it dispatches Messages directly to a subscriber. As a point-to-point channel, however,
it differs from the Publ i shSubscri beChannel in that it will only send each Message to a single
subscribed MessageHandl er .

In addition to being the simplest point-to-point channel option, one of its most important features is
that it enables a single thread to perform the operations on "both sides" of the channel. For example,
if a handler is subscribed to a Di r ect Channel , then sending a Message to that channel will trigger
invocation of that handler's handl eMessage(Message) method directly in the sender's thread, before
the send() method invocation can return.

The key motivation for providing a channel implementation with this behavior is to support transactions
that must span across the channel while still benefiting from the abstraction and loose coupling that the
channel provides. If the send call is invoked within the scope of a transaction, then the outcome of the
handler's invocation (e.g. updating a database record) will play a role in determining the ultimate result
of that transaction (commit or rollback).

Spring Integration
3.0.1.RELEASE Reference Manual 21

Spring Integration

© Note

Since the Di r ect Channel is the simplest option and does not add any additional overhead that
would be required for scheduling and managing the threads of a poller, it is the default channel
type within Spring Integration. The general idea is to define the channels for an application and
then to consider which of those need to provide buffering or to throttle input, and then modify those
to be queue-based Pol | abl eChannel s. Likewise, if a channel needs to broadcast messages,
it should not be a Di r ect Channel but rather a Publ i shSubscri beChannel . Below you will
see how each of these can be configured.

The Di r ect Channel internally delegates to a Message Dispatcher to invoke its subscribed Message
Handlers, and that dispatcher can have a load-balancing strategy exposed via load-balancer or load-
balancer-ref attributes (mutually exclusive). The load balancing strategy is used by the Message
Dispatcher to help determine how Messages are distributed amongst Message Handlers in the case
that there are multiple Message Handlers subscribed to the same channel. As a convinience the
load-balancer attribute exposes enumeration of values pointing to pre-existing implementations of
LoadBal anci ngSt r at egy. The "round-robin" (load-balances across the handlers in rotation) and
"none" (for the cases where one wants to explicitely disable load balancing) are the only available values.
Other strategy implementations may be added in future versions. However, since version 3.0 you can
provide your own implementation of the LoadBal anci ngSt r at egy and inject it using load-balancer-
ref attribute which should point to a bean that implements LoadBal anci ngSt r at egy.
<i nt:channel id="I|bRef Channel ">
<i nt:di spat cher |oad-bal ancer-ref="1b"/>

</int:channel >

<bean id="Ib" class="foo. bar. Sanpl eLoadBal anci ngStr at egy"/ >

Note that load-balancer or load-balancer-ref attributes are mutually exclusive.

The load-balancing also works in combination with a boolean failover property. If the "failover”" value
is true (the default), then the dispatcher will fall back to any subsequent handlers as necessary when
preceding handlers throw Exceptions. The order is determined by an optional order value defined on
the handlers themselves or, if no such value exists, the order in which the handlers are subscribed.

If a certain situation requires that the dispatcher always try to invoke the first handler, then fallback
in the same fixed order sequence every time an error occurs, no load-balancing strategy should be
provided. In other words, the dispatcher still supports the failover boolean property even when no load-
balancing is enabled. Without load-balancing, however, the invocation of handlers will always begin with
the first according to their order. For example, this approach works well when there is a clear definition
of primary, secondary, tertiary, and so on. When using the namespace support, the "order" attribute on
any endpoint will determine that order.

© Note

Keep in mind that load-balancing and failover only apply when a channel has more than one
subscribed Message Handler. When using the namespace support, this means that more than
one endpoint shares the same channel reference in the "input-channel" attribute.

ExecutorChannel

The Execut or Channel is a point-to-point channel that supports the same dispatcher configuration
as Di rect Channel (load-balancing strategy and the failover boolean property). The key difference
between these two dispatching channel types is that the Execut or Channel delegates to an instance

Spring Integration
3.0.1.RELEASE Reference Manual 22

Spring Integration

of TaskExecut or to perform the dispatch. This means that the send method typically will not block,
but it also means that the handler invocation may not occur in the sender's thread. It therefore does not
support transactions spanning the sender and receiving handler.

@ Tip
Note that there are occasions where the sender may block. For example, when using
a TaskExecutor with a rejection-policy that throttles back on the client (such as the
Thr eadPool Execut or. Cal | er RunsPol i cy), the sender's thread will execute the method
directly anytime the thread pool is at its maximum capacity and the executor's work queue is full.
Since that situation would only occur in a non-predictable way, that obviously cannot be relied
upon for transactions.

Scoped Channel

Spring Integration 1.0 provided a Thr eadLocal Channel implementation, but that has been removed
as of 2.0. Now, there is a more general way for handling the same requirement by simply adding a
"scope" attribute to a channel. The value of the attribute can be any name of a Scope that is available
within the context. For example, in a web environment, certain Scopes are available, and any custom
Scope implementations can be registered with the context. Here's an example of a ThreadLocal-based
scope being applied to a channel, including the registration of the Scope itself.

<int:channel id="threadScopedChannel" scope="t hread">
<i nt:queue />
</int:channel >

<bean cl ass="org. spri ngframewor k. beans. factory. confi g. Cust onScopeConfi gurer">
<property name="scopes">
<n’ap>

<entry key="thread" val ue="org. springframework. cont ext.support.Si npl eThreadScope" />
</ map>
</ property>
</ bean>

The channel above also delegates to a queue internally, but the channel is bound to the current thread,
so the contents of the queue are as well. That way the thread that sends to the channel will later be able to
receive those same Messages, but no other thread would be able to access them. While thread-scoped
channels are rarely needed, they can be useful in situations where Di r ect Channel s are being used
to enforce a single thread of operation but any reply Messages should be sent to a "terminal”" channel.
If that terminal channel is thread-scoped, the original sending thread can collect its replies from it.

Now, since any channel can be scoped, you can define your own scopes in addition to Thread Local.
Channel Interceptors

One of the advantages of a messaging architecture is the ability to provide common behavior and
capture meaningful information about the messages passing through the system in a non-invasive way.
Since the Messages are being sent to and received from MessageChannel s, those channels provide
an opportunity for intercepting the send and receive operations. The Channel | nt er cept or strategy
interface provides methods for each of those operations:

Spring Integration
3.0.1.RELEASE Reference Manual 23

Spring Integration

public interface Channel |l nterceptor {
Message<?> preSend(Message<?> nessage, MessageChannel channel);
voi d post Send(Message<?> nessage, MessageChannel channel, bool ean sent);
bool ean preRecei ve(MessageChannel channel);

Message<?> post Recei ve(Message<?> nessage, MessageChannel channel);

}
After implementing the interface, registering the interceptor with a channel is just a matter of calling:

channel . addl nt er cept or (someChannel | nt er cept or) ;

The methods that return a Message instance can be used for transforming the Message or can return
‘null’ to prevent further processing (of course, any of the methods can throw a RuntimeException). Also,
the pr eRecei ve method can return 'f al se' to prevent the receive operation from proceeding.

@ Note

Keep in mind that recei ve() calls are only relevant for Pol | abl eChannel s. In fact the
Subscri babl eChannel interface does not even define ar ecei ve() method. The reason for
this is that when a Message is sent to a Subscr i babl eChannel it will be sent directly to one
or more subscribers depending on the type of channel (e.g. a PublishSubscribeChannel sends
to all of its subscribers). Therefore, the pr eRecei ve(..) and post Recei ve(..) interceptor
methods are only invoked when the interceptor is applied to a Pol | abl eChannel .

Spring Integration also provides an implementation of the Wire Tap pattern. It is a simple interceptor
that sends the Message to another channel without otherwise altering the existing flow. It can be very
useful for debugging and monitoring. An example is shown in the section called “Wire Tap”.

Because it is rarely necessary to implement all of the interceptor methods, a
Channel | nt er cept or Adapt er class is also available for sub-classing. It provides no-op methods
(the voi d method is empty, the Message returning methods return the Message as-is, and the bool ean
method returns true). Therefore, it is often easiest to extend that class and just implement the
method(s) that you need as in the following example.

public class CountingChannel | nterceptor extends Channel | nt ercept or Adapter {
private final Atom clnteger sendCount = new Atomni clnteger();

@verride

publ i c Message<?> preSend(Message<?> nessage, MessageChannel channel) {
sendCount . i ncr ement AndGet () ;
return nmessage

@ Tip
The order of invocation for the interceptor methods depends on the type of channel. As described
above, the queue-based channels are the only ones where the receive method is intercepted
in the first place. Additionally, the relationship between send and receive interception depends
on the timing of separate sender and receiver threads. For example, if a receiver is already
blocked while waiting for a message the order could be: preSend, preReceive, postReceive,
postSend. However, if a receiver polls after the sender has placed a message on the channel
and already returned, the order would be: preSend, postSend, (some-time-elapses) preReceive,

Spring Integration
3.0.1.RELEASE Reference Manual 24

http://eaipatterns.com/WireTap.html

Spring Integration

postReceive. The time that elapses in such a case depends on a number of factors and is
therefore generally unpredictable (in fact, the receive may never happen!). Obviously, the type
of queue also plays a role (e.g. rendezvous vs. priority). The bottom line is that you cannot rely
on the order beyond the fact that preSend will precede postSend and preReceive will precede
postReceive.

MessagingTemplate

As you will see when the endpoints and their various configuration options are introduced, Spring
Integration provides a foundation for messaging components that enables non-invasive invocation of
your application code from the messaging system. However, sometimes it is necessary to invoke the
messaging system from your application code. For convenience when implementing such use-cases,
Spring Integration provides a Messagi ngTenpl at e that supports a variety of operations across the
Message Channels, including request/reply scenarios. For example, it is possible to send a request and
wait for a reply.

Messagi ngTenpl ate tenpl ate = new Messagi ngTenpl ate();

Message reply = tenpl ate. sendAndRecei ve(sonmeChannel , new Generi cMessage("test"));

In that example, a temporary anonymous channel would be created internally by the template. The
'sendTimeout' and 'receiveTimeout' properties may also be set on the template, and other exchange
types are also supported.

publ i c bool ean send(final MessageChannel channel, final Message<?> nmessage) { ... }

publ i c Message<?> sendAndRecei ve(final MessageChannel channel, final Message<?> request)

{1

publ i c Message<?> receive(final Pollabl eChannel <?> channel) { ... }

© Note

A less invasive approach that allows you to invoke simple interfaces with payload and/or
header values instead of Message instances is described in the section called “Enter the
GatewayProxyFactoryBean”.

Configuring Message Channels

To create a Message Channel instance, you can use the <channel/> element:

<i nt:channel id="exanpl eChannel"/>

The default channel type is Point to Point. To create a Publish Subscribe channel, use the <publish-
subscribe-channel/> element:

<i nt: publ i sh-subscri be-channel id="exanpl eChannel"/>

When using the <channel/> element without any sub-elements, it will create a Di r ect Channel instance
(a Subscri babl eChannel).

However, you can alternatively provide a variety of <queue/> sub-elements to create any of the pollable
channel types (as described in the section called “Message Channel Implementations”). Examples of
each are shown below.

Spring Integration
3.0.1.RELEASE Reference Manual 25

Spring Integration

DirectChannel Configuration

As mentioned above, Di r ect Channel is the default type.

<i nt:channel id="directChannel"/>

A default channel will have a round-robin load-balancer and will also have failover enabled (See the
discussion in the section called “DirectChannel” for more detail). To disable one or both of these, add
a <dispatcher/> sub-element and configure the attributes:

<int:channel id="fail FastChannel">
<int:dispatcher failover="fal se"/>
</ channel >

<int:channel id="channel WthFi xedO der SequenceFai | over ">
<i nt:di spat cher | oad-bal ancer="none"/>
</'int:channel >

Datatype Channel Configuration

There are times when a consumer can only process a particular type of payload and you need to
therefore ensure the payload type of input Messages. Of course the first thing that comes to mind is
Message Filter. However all that Message Filter will do is filter out Messages that are not compliant with
the requirements of the consumer. Another way would be to use a Content Based Router and route
Messages with non-compliant data-types to specific Transformers to enforce transformation/conversion
to the required data-type. This of course would work, but a simpler way of accomplishing the same thing
is to apply the Datatype Channel pattern. You can use separate Datatype Channels for each specific
payload data-type.

To create a Datatype Channel that only accepts messages containing a certain payload type, provide
the fully-qualified class name in the channel element's dat at ype attribute:

<i nt:channel id="nunberChannel" datatype="java.|ang. Nunber"/>

Note that the type check passes for any type that is assignable to the channel's datatype. In other
words, the "numberChannel" above would accept messages whose payload is j ava. | ang. | nt eger
orj ava. | ang. Doubl e. Multiple types can be provided as a comma-delimited list:

<int:channel id="stringO Nunber Channel " datatype="java.l ang. String,java.l|lang. Nunber"/>

So the 'numberChannel’ above will only accept Messages with a data-type of j ava. | ang. Nunber .
But what happens if the payload of the Message is not of the required type? It depends on whether
you have defined a bean named "integrationConversionService" that is an instance of Spring's
Conversion Service. If not, then an Exception would be thrown immediately, but if you do have an
"integrationConversionService" bean defined, it will be used in an attempt to convert the Message's
payload to the acceptable type.

You can even register custom converters. For example, let's say you are sending a Message with a
String payload to the 'numberChannel' we configured above.

MessageChannel inChannel = context.get Bean("nunber Channel ", MessageChannel . cl ass);
i nChannel . send(new Generi cMessage<String>("5"));

Typically this would be a perfectly legal operation, however since we are using Datatype Channel the
result of such operation would generate an exception:

Spring Integration
3.0.1.RELEASE Reference Manual 26

http://www.eaipatterns.com/DatatypeChannel.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/validation.html#core-convert-ConversionService-API

Spring Integration

Exception in thread "main" org.springframework.integrati on. MessageDel i ver yExcepti on
Channel ' nunber Channel

expected one of the follow ng datataypes [class java.lang. Nunber],

but received [class java.lang. String]

And rightfully so since we are requiring the payload type to be a Number while sending a String. So we
need something to convert String to a Number. All we need to do is implement a Converter.

public static class StringTolntegerConverter inplenents Converter<String, |nteger> {
public Integer convert(String source) {
return | nteger. parselnt(source);

}

}

Then, register it as a Converter with the Integration Conversion Service:

<int:converter ref="strTolnt"/>

<bean
id="strTolnt" class="org.springframework.integration.util.Denp.StringTolntegerConverter"/
>

When the 'converter' element is parsed, it will create the "integrationConversionService" bean on-
demand if one is not already defined. With that Converter in place, the send operation would now be
successful since the Datatype Channel will use that Converter to convert the String payload to an Integer.

© Note

For more information regarding Payload Type Conversion, please read the section called
“Payload Type Conversion”.

QueueChannel Configuration

To create a QueueChannel , use the <queue/> sub-element. You may specify the channel's capacity:

<i nt:channel id="queueChannel ">
<queue capacity="25"/>
</int:channel >

© Note

If you do not provide a value for the 'capacity' attribute on this <queue/> sub-element, the
resulting queue will be unbounded. To avoid issues such as OutOfMemoryErrors, it is highly
recommended to set an explicit value for a bounded queue.

Persistent QueueChannel Configuration

Since a QueueChannel provides the capability to buffer Messages, but does so in-memory only
by default, it also introduces a possibility that Messages could be lost in the event of a system
failure. To mitigate this risk, a QueueChannel may be backed by a persistent implementation
of the MessageG oupSt or e strategy interface. For more details on MessageG oupSt ore and
MessagesSt or e see Section 8.3, “Message Store”.

When a QueueChannel receives a Message, it will add it to the Message Store, and when a Message
is polled from a QueueChannel , it is removed from the Message Store.

Spring Integration
3.0.1.RELEASE Reference Manual 27

Spring Integration

By default any QueueChannel only stores its Messages in an in-memory Queue and can therefore
lead to the lost message scenario mentioned above. However Spring Integration provides a
JdbcMessageSt or e to allow a QueueChannel to be backed by an RDBMS.

You can configure a Message Store for any QueueChannel by adding the message- st or e attribute
as shown in the next example.

<i nt:channel id="dbBackedChannel ">
<i nt:queue nessage-store="nmessageStore"/>
</int:channel >

<int-jdbc: nessage-store id="messageStore" data-source="soneDataSource"/>

The above example also shows that JdbcMessageSt or e can be configured with the namespace
support provided by the Spring Integration JDBC module. All you need to do is inject any
j avax. sqgl . Dat aSour ce instance. The Spring Integration JDBC module also provides schema DDL
for most popular databases. These schemas are located in the org.springframework.integration.jdbc
package of that module (spring-integration-jdbc).

© Important
One important feature is that with any transactional persistent store (e.g., JdbcMessageStore),
as long as the poller has a transaction configured, a Message removed from the store will only
be permanently removed if the transaction completes successfully, otherwise the transaction will
roll back and the Message will not be lost.

Many other implementations of the Message Store will be available as the growing number of Spring
projects related to "NoSQL" data stores provide the underlying support. Of course, you can always
provide your own implementation of the MessageGroupStore interface if you cannot find one that meets
your particular needs.

PublishSubscribeChannel Configuration

To create a Publ i shSubscri beChannel , use the <publish-subscribe-channel/> element. When
using this element, you can also specify the t ask- execut or used for publishing Messages (if none
is specified it simply publishes in the sender's thread):

<i nt: publ i sh-subscri be-channel id="pubsubChannel" task-executor="someExecutor"/>

If you are providing a Resequencer or Aggregator downstream from a Publ i shSubscri beChannel ,
then you can set the 'apply-sequence' property on the channeltot r ue. That will indicate that the channel
should set the sequence-size and sequence-number Message headers as well as the correlation id prior
to passing the Messages along. For example, if there are 5 subscribers, the sequence-size would be
set to 5, and the Messages would have sequence-number header values ranging from 1 to 5.

<i nt: publish-subscri be-channel id="pubsubChannel" apply-sequence="true"/>

© Note

The appl y- sequence value is f al se by default so that a Publish Subscribe Channel can
send the exact same Message instances to multiple outbound channels. Since Spring Integration
enforces immutability of the payload and header references, the channel creates new Message
instances with the same payload reference but different header values when the flag is set to
true.

Spring Integration
3.0.1.RELEASE Reference Manual 28

Spring Integration

ExecutorChannel

To create an Execut or Channel , add the <dispatcher> sub-element along with a t ask- execut or
attribute. Its value can reference any TaskExecut or within the context. For example, this enables
configuration of a thread-pool for dispatching messages to subscribed handlers. As mentioned above,
this does break the "single-threaded" execution context between sender and receiver so that any active
transaction context will not be shared by the invocation of the handler (i.e. the handler may throw an
Exception, but the send invocation has already returned successfully).

<i nt:channel id="executorChannel">
<i nt:di spat cher task-executor="someExecutor"/>
</int:channel >

@ Note

The | oad- bal ancer and f ai | over options are also both available on the <dispatcher/> sub-
element as described above in the section called “DirectChannel Configuration”. The same
defaults apply as well. So, the channel will have a round-robin load-balancing strategy with
failover enabled unless explicit configuration is provided for one or both of those attributes.

<i nt:channel id="executorChannel Wt hout Fai | over" >
<int:di spat cher task-executor="sonmeExecutor" failover="fal se"/>
</int:channel >

PriorityChannel Configuration
To create a Pri ori t yChannel , use the <priority-queue/> sub-element:

<i nt:channel id="priorityChannel">
<int:priority-queue capacity="20"/>
</int:channel >
By default, the channel will consult the priority header of the message. However, a custom
Conpar at or reference may be provided instead. Also, note that the Pri ori t yChannel (like the other
types) does support the dat at ype attribute. As with the QueueChannel, it also supports a capaci ty
attribute. The following example demonstrates all of these:

<int:channel id="priorityChannel" datatype="exanpl e. W dget" >
<int:priority-queue conpar ator="w dget Conpar at or "
capaci ty="10"/>
</int:channel >

RendezvousChannel Configuration

A RendezvousChannel is created when the queue sub-element is a <rendezvous-queue>. It does not
provide any additional configuration options to those described above, and its queue does not accept
any capacity value since it is a 0-capacity direct handoff queue.

<i nt:channel id="rendezvousChannel"/>
<i nt:rendezvous- queue/ >
</int:channel >

Scoped Channel Configuration

Any channel can be configured with a "scope" attribute.

<int:channel id="threadLocal Channel" scope="thread"/>

Spring Integration
3.0.1.RELEASE Reference Manual 29

Spring Integration

Channel Interceptor Configuration

Message channels may also have interceptors as described in the section called “Channel Interceptors”.
The <interceptors/> sub-element can be added within <channel/> (or the more specific element
types). Provide the ref attribute to reference any Spring-managed object that implements the
Channel | nt er cept or interface:

<i nt:channel id="exanpl eChannel ">
<int:interceptors>
<ref bean="trafficMonitoringlnterceptor"/>
</int:interceptors>
</int:channel >
In general, it is a good idea to define the interceptor implementations in a separate location since they

usually provide common behavior that can be reused across multiple channels.
Global Channel Interceptor Configuration

Channel Interceptors provide a clean and concise way of applying cross-cutting behavior per individual
channel. If the same behavior should be applied on multiple channels, configuring the same set of
interceptors for each channel would not be the most efficient way. To avoid repeated configuration while
also enabling interceptors to apply to multiple channels, Spring Integration provides Global Interceptors.
Look at the example below:

<int:channel -interceptor pattern="input*, bar*, foo" order="3">
<bean cl ass="f 00. bar Sanpl el nt erceptor"/>
</int:channel -interceptor>

or

<int:channel -interceptor ref="nylnterceptor" pattern="input*, bar*, foo" order="3"/>

<bean i d="nylnterceptor" class="foo0.bar Sanpl el nterceptor"/>

Each <channel-interceptor/> element allows you to define a global interceptor which will be applied on
all channels that match any patterns defined via the pat t er n attribute. In the above case the global
interceptor will be applied on the 'foo’' channel and all other channels that begin with 'bar' or 'input'.
The order attribute allows you to manage where this interceptor will be injected if there are multiple
interceptors on a given channel. For example, channel 'inputChannel’ could have individual interceptors
configured locally (see below):

<i nt:channel id="inputChannel ">
<int:interceptors>
<int:w re-tap channel ="l ogger"/>
</int:interceptors>
</int:channel >

A reasonable question is how will a global interceptor be injected in relation to other interceptors
configured locally or through other global interceptor definitions? The current implementation provides a
very simple mechanism for defining the order of interceptor execution. A positive number in the or der
attribute will ensure interceptor injection after any existing interceptors and a negative number will ensure
that the interceptor is injected before existing interceptors. This means that in the above example, the
global interceptor will be injected AFTER (since its order is greater than 0) the 'wire-tap’ interceptor
configured locally. If there were another global interceptor with a matching pat t er n, its order would be
determined by comparing the values of the or der attribute. To inject a global interceptor BEFORE the
existing interceptors, use a negative value for the or der attribute.

Spring Integration
3.0.1.RELEASE Reference Manual 30

Spring Integration

© Note

Note that both the or der and pat t er n attributes are optional. The default value for or der will
be 0 and for pat t er n, the default is *' (to match all channels).

Wire Tap

As mentioned above, Spring Integration provides a simple Wire Tap interceptor out of the box. You can
configure a Wire Tap on any channel within an <interceptors/> element. This is especially useful for
debugging, and can be used in conjunction with Spring Integration's logging Channel Adapter as follows:

<i nt:channel id="in">
<int:interceptors>
<int:w re-tap channel ="l ogger"/>
</int:interceptors>
</int:channel >

<i nt: | oggi ng- channel - adapter id="1ogger" |evel ="DEBUG'/ >

@ Tip
The 'logging-channel-adapter' also accepts an ‘expression’ attribute so that you can evaluate a
SpEL expression against '‘payload' and/or 'headers' variables. Alternatively, to simply log the full
Message toString() result, provide a value of "true" for the 'log-full-message' attribute. That is
f al se by default so that only the payload is logged. Setting that to t r ue enables logging of
all headers in addition to the payload. The 'expression’ option does provide the most flexibility,
however (e.g. expression="payload.user.name").

A little more on Wire Tap

One of the common misconceptions about the wire tap and other similar components (Section B.1,
“Message Publishing Configuration”) is that they are automatically asynchronous in nature. Wire-tap as
a component is not invoked asynchronously be default. Instead, Spring Integration focuses on a single
unified approach to configuring asynchronous behavior: the Message Channel. What makes certain
parts of the message flow sync or async is the type of Message Channel that has been configured within
that flow. That is one of the primary benefits of the Message Channel abstraction. From the inception
of the framework, we have always emphasized the need and the value of the Message Channel as
a first-class citizen of the framework. It is not just an internal, implicit realization of the EIP pattern, it
is fully exposed as a configurable component to the end user. So, the Wire-tap component is ONLY
responsible for performing the following 3 tasks:

* intercept a message flow by tapping into a channel (e.g., channelA)
» grab each message

» send the message to another channel (e.g., channelB)

It is essentially a variation of the Bridge, but it is encapsulated within a channel definition (and
hence easier to enable and disable without disrupting a flow). Also, unlike the bridge, it basically forks
another message flow. Is that flow synchronous or asynchronous? The answer simply depends on
the type of Message Channel that ‘channelB' is. And, now you know that we have: Direct Channel,
Pollable Channel, and Executor Channel as options. The last two do break the thread boundary making
communication via such channels asynchronous simply because the dispatching of the message from
that channel to its subscribed handlers happens on a different thread than the one used to send the
message to that channel. That is what is going to make your wire-tap flow sync or async. It is consistent
with other components within the framework (e.g., Message Publisher) and actually brings a level of

Spring Integration
3.0.1.RELEASE Reference Manual 31

Spring Integration

consistency and simplicity by sparing you from worrying in advance (other than writing thread safe code)
whether a particular piece of code should be implemented as sync or async. The actual wiring of two
pieces of code (component A and component B) via Message Channel is what makes their collaboration
sync or async. You may even want to change from sync to async in the future and Message Channel
is what's going to allow you to do it swiftly without ever touching the code.

One final point regarding the Wire Tap is that, despite the rationale provided above for not being async
be default, one should keep in mind it is usually desirable to hand off the Message as soon as possible.
Therefore, it would be quite common to use an asynchronous channel option as the wire-tap's outbound
channel. Nonetheless, another reason that we do not enforce asynchronous behavior by default is that
you might not want to break a transactional boundary. Perhaps you are using the Wire Tap for auditing
purposes, and you DO want the audit Messages to be sent within the original transaction. As an example,
you might connect the wire-tap to a JMS outbound-channel-adapter. That way, you get the best of both
worlds: 1) the sending of a IMS Message can occur within the transaction while 2) it is still a "fire-and-
forget" action thereby preventing any noticeable delay in the main message flow.

Global Wire Tap Configuration

It is possible to configure a global wire tap as a special case of the Global Channel Interceptor. Simply
configure a top level wi r e- t ap element. Now, in addition to the normal wi r e-t ap namespace support,
the pattern and order attributes are supported and work in exactly the same way as with the
channel -i nt er cept or

<int:wire-tap pattern="input*, bar*, foo" order="3" channel ="wi retapChannel "/ >

@ Tip
A global wire tap provides a convenient way to configure a single channel wire tap externally
without modifying the existing channel configuration. Simply set the patt er n attribute to the
target channel name. For example, This technique may be used to configure a test case to verify
messages on a channel.

Special Channels

If namespace support is enabled, there are two special channels defined within the application context
by default: er r or Channel and nul | Channel . The 'nullChannel’ acts like / dev/ nul | , simply logging
any Message sentto it at DEBUG level and returning immediately. Any time you face channel resolution
errors for a reply that you don't care about, you can set the affected component's out put - channel

attribute to 'nullChannel’ (the name 'nullChannel' is reserved within the application context). The
‘errorChannel’ is used internally for sending error messages and may be overridden with a custom
configuration. This is discussed in greater detail in Section F.4, “Error Handling”.

3.2 Poller (Polling Consumer)

When Message Endpoints (Channel Adapters) are connected to channels and instantiated, they
produce one of the following 2 instances:

¢ PollingConsumer

» EventDrivenConsumer

The actual implementation depends on which type of channel these Endpoints are
connected to. A channel adapter connected to a channel that implements the
org. springfranmework.integration. core. Subscri babl eChannel interface will produce an

Spring Integration
3.0.1.RELEASE Reference Manual 32

http://static.springsource.org/spring-integration/api/org/springframework/integration/endpoint/PollingConsumer.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/endpoint/EventDrivenConsumer.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/core/SubscribableChannel.html

Spring Integration

instance of Event Dri venConsuner . On the other hand, a channel adapter connected to a channel that
implements the or g. spri ngf ranewor k. i nt egrati on. core. Pol | abl eChannel interface (e.g. a
QueueChannel) will produce an instance of Pol | i ngConsurner .

Polling Consumers allow Spring Integration components to actively poll for Messages, rather than to
process Messages in an event-driven manner.

They represent a critical cross cutting concern in many messaging scenarios. In Spring Integration,
Polling Consumers are based on the pattern with the same name, which is described in the book
"Enterprise Integration Patterns” by Gregor Hohpe and Bobby Woolf. You can find a description of the
pattern on the book's website at:

* http://www.enterpriseintegrationpatterns.com/PollingConsumer.html

Furthermore, in Spring Integration a second variation of the Polling Consumer pattern exists.
When Inbound Channel Adapters are being used, these adapters are often wrapped by a
Sour cePol | i ngChannel Adapt er. For example, when retrieving messages from a remote FTP
Server location, the adapter described in Section 14.3, “FTP Inbound Channel Adapter” is configured
with a poller to retrieve messages periodically. So, when components are configured with Pollers, the
resulting instances are of one of the following types:

* PollingConsumer

» SourcePollingChannelAdapter

This means, Pollers are used in both inbound and outbound messaging scenarios. Here are some use-
cases that illustrate the scenarios in which Pollers are used:

» Polling certain external systems such as FTP Servers, Databases, Web Services
 Polling internal (pollable) Message Channels
» Polling internal services (E.g. repeatedly execute methods on a Java class)

This chapter is meant to only give a high-level overview regarding Polling Consumers and how they
fit into the concept of message channels - Section 3.1, “Message Channels” and channel adapters
- Section 3.3, “Channel Adapter”. For more in-depth information regarding Messaging Endpoints in
general and Polling Consumers in particular, please see Section 7.1, “Message Endpoints”.

3.3 Channel Adapter

A Channel Adapter is a Message Endpoint that enables connecting a single sender or receiver to
a Message Channel. Spring Integration provides a number of adapters out of the box to support
various transports, such as JMS, File, HTTP, Web Services, Mail, and more. Those will be discussed
in upcoming chapters of this reference guide. However, this chapter focuses on the simple but flexible
Method-invoking Channel Adapter support. There are both inbound and outbound adapters, and each
may be configured with XML elements provided in the core namespace. These provide an easy way
to extend Spring Integration as long as you have a method that can be invoked as either a source or
destination.

Configuring An Inbound Channel Adapter

An "inbound-channel-adapter" element can invoke any method on a Spring-managed Object and send
a non-null return value to a MessageChannel after converting it to a Message. When the adapter's
subscription is activated, a poller will attempt to receive messages from the source. The poller will be

Spring Integration
3.0.1.RELEASE Reference Manual 33

http://static.springsource.org/spring-integration/api/org/springframework/integration/core/PollableChannel.html
http://www.enterpriseintegrationpatterns.com/PollingConsumer.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/endpoint/PollingConsumer.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/endpoint/SourcePollingChannelAdapter.html

Spring Integration

scheduled with the TaskSchedul er according to the provided configuration. To configure the polling
interval or cron expression for an individual channel-adapter, provide a 'poller' element with one of the
scheduling attributes, such as ‘fixed-rate' or 'cron'.

<i nt:inbound- channel - adapter ref="sourcel" nethod="nethodl" channel ="channel 1">

<int:poller fixed-rate="5000"/>

</int:inbound- channel - adapt er >

<i nt:inbound-channel - adapt er ref="source2" nethod="nethod2" channel ="channel 2" >

<int:poller cron="30 * 9-17 * * MON-FRI "/ >

</int:channel - adapt er >

Also see the section called “Channel Adapter Expressions and Scripts”.

o

Note

If no poller is provided, then a single default poller must be registered within the context. See the
section called “Namespace Support” for more detail.

Important

Poller Configuration

Some i nbound- channel - adapt er types are backed by a
Sour cePol | i ngChannel Adapt er which means they contain Poller configuration which will
poll the MessageSour ce (invoke a custom method which produces the value that becomes a
Message payload) based on the configuration specified in the Poller.

For example:
<int:poller max-nmessages-per-poll="1" fixed-rate="1000"/>
<int:poller max-nmessages-per-poll="10" fixed-rate="1000"/>

In the the first configuration the polling task will be invoked once per poll and during such task
(poll) the method (which results in the production of the Message) will be invoked once based on
the max- nessages- per - pol | attribute value. In the second configuration the polling task will
be invoked 10 times per poll or until it returns 'null’ thus possibly producing 10 Messages per poll
while each poll happens at 1 second intervals. However what if the configuration looks like this:

<int:poller fixed-rate="1000"/>

Note there is no max- nmessages- per - pol | specified. As you'll learn later the identical poller
configuration in the Pol | i ngConsurmer (e.g., service-activator, filter, router etc.) would have a
default value of -1 for max- messages- per - pol | which means "execute poling task non-stop
unless polling method returns null (e.g., no more Messages in the QueueChannel)" and then
sleep for 1 second.

However in the SourcePollingChannelAdapter it is a bit different. The default value for max-
messages- per - pol | will be set to 1 by default unless you explicitly set it to a negative value
(e.g., -1). It is done so to make sure that poller can react to a LifeCycle events (e.g., start/stop)
and prevent it from potentially spinning in the infinite loop if the implementation of the custom
method of the MessageSour ce has a potential to never return null and happened to be non-
interruptible.

Spring Integration

3.0.1.RELEASE Reference Manual 34

Spring Integration

However if you are sure that your method can return null and you need the behavior where you
want to poll for as many sources as available per each poll, then you should explicitly set max-
nmessages- per - pol | to negative value.

<int:poller max-nessages-per-poll="-1" fixed-rate="1000"/>

Configuring An Outbound Channel Adapter

An "outbound-channel-adapter" element can also connect a MessageChannel to any POJO consumer
method that should be invoked with the payload of Messages sent to that channel.

<i nt: out bound- channel - adapt er channel ="channel 1" ref="target" nmet hod="handl e"/>

<beans: bean id="target" class="org.Foo"/>

If the channel being adapted is a Pol | abl eChannel , provide a poller sub-element:

<i nt : out bound- channel - adapt er channel ="channel 2" ref="target" method="handl e">
<int:poller fixed-rate="3000"/>
</i nt: out bound- channel - adapt er >

<beans: bean i d="target" class="org. Foo"/>

Using a "ref" attribute is generally recommended if the POJO consumer implementation can be reused
in other <out bound- channel - adapt er > definitions. However if the consumer implementation is only
referenced by a single definition of the <out bound- channel - adapt er >, you can define it as inner
bean:

<i nt : out bound- channel - adapt er channel ="channel " net hod="handl e" >
<beans: bean cl ass="org. Foo"/ >
</i nt: out bound- channel - adapt er >

© Note

Using both the "ref* attribute and an inner handler definition in the same <out bound-
channel - adapt er > configuration is not allowed as it creates an ambiguous condition. Such a
configuration will result in an Exception being thrown.

Any Channel Adapter can be created without a "channel" reference in which case it will implicitly
create an instance of Di r ect Channel . The created channel's name will match the "id" attribute of
the <i nbound- channel - adapt er > or <out bound- channel - adapt er > element. Therefore, if the
"channel” is not provided, the "id" is required.

Channel Adapter Expressions and Scripts

Like many other Spring Integration components, the <i nbound-channel -adapter> and
<out bound- channel - adapt er > also provide support for SpEL expression evaluation. To use SpEL,
provide the expression string via the 'expression’ attribute instead of providing the 'ref' and 'method'
attributes that are used for method-invocation on a bean. When an Expression is evaluated, it follows
the same contract as method-invocation where: the expression for an <i nbound- channel - adapt er >
will generate a message anytime the evaluation result is a non-null value, while the expression for an
<out bound- channel - adapt er > must be the equivalent of a void returning method invocation.

Spring Integration
3.0.1.RELEASE Reference Manual 35

Spring Integration

Starting with Spring Integration 3.0, an <i nt : i nbound- channel - adapt er / > can also be configured
with a SpEL <expr essi on/ > (or even with <scri pt/ >) sub-element, for when more sophistication
is required than can be achieved with the simple 'expression' attribute. If you provide a script as
a Resour ce using the | ocati on attribute, you can also set the refresh-check-delay allowing the
resource to be refreshed periodically. If you want the script to be checked on each poll, you would need
to coordinate this setting with the poller's trigger:

<i nt:inbound- channel - adapter ref="sourcel" nethod="nethodl" channel ="channel 1">
<int:poller max-nmessages-per-poll="1" fixed-del ay="5000"/>
<script:script |ang="ruby" |ocation="Foo.rb" refresh-check-del ay="5000"/>
</int:inbound- channel - adapt er >

Also see the cacheSeconds property on the Rel oadabl eResour ceBundl eExpr essi onSour ce
when using the <expressi on/ > sub-element. For more information regarding expressions see
Appendix A, Spring Expression Language (SpEL), and for scripts - Section 7.6, “Groovy support” and
Section 7.5, “Scripting support”.

© Important

The <i nt:i nbound- channel - adapt er/ > is an endpoint that starts a message flow via
periodic triggering to poll some underlying MessageSour ce. Since, at the time of polling, there
is not yet a message object, expressions and scripts don't have access to a root Message, so
there are no payload or headers properties that are available in most other messaging SpEL
expressions. Of course, the script can generate and return a complete Message object with
headers and payload, or just a payload, which will be added to a message with basic headers.

3.4 Messaging Bridge

Introduction

A Messaging Bridge is a relatively trivial endpoint that simply connects two Message Channels
or Channel Adapters. For example, you may want to connect a Pol | abl eChannel to a
Subscri babl eChannel so that the subscribing endpoints do not have to worry about any polling
configuration. Instead, the Messaging Bridge provides the polling configuration.

By providing an intermediary poller between two channels, a Messaging Bridge can be used to throttle
inbound Messages. The poller's trigger will determine the rate at which messages arrive on the second
channel, and the poller's "maxMessagesPerPoll" property will enforce a limit on the throughput.

Another valid use for a Messaging Bridge is to connect two different systems. In such a scenario, Spring
Integration's role would be limited to making the connection between these systems and managing a
poller if necessary. It is probably more common to have at least a Transformer between the two systems
to translate between their formats, and in that case, the channels would be provided as the 'input-
channel' and 'output-channel' of a Transformer endpoint. If data format translation is not required, the
Messaging Bridge may indeed be sufficient.

Configuring Bridge

The <bridge> element is used to create a Messaging Bridge between two Message Channels or Channel
Adapters. Simply provide the "input-channel" and "output-channel" attributes:

<int:bridge input-channel ="input" out put-channel ="out put"/>

Spring Integration
3.0.1.RELEASE Reference Manual 36

Spring Integration

As mentioned above, a common use case for the Messaging Bridge is to connect a Pol | abl eChannel
to a Subscri babl eChannel , and when performing this role, the Messaging Bridge may also serve
as a throttler:

<int:bridge input-channel ="pol | able" output-channel ="subscri babl e">
<int:poller max-nmessages-per-poll="10" fixed-rate="5000"/>
</int:bridge>

Connecting Channel Adapters is just as easy. Here is a simple echo example between the "stdin" and
"stdout" adapters from Spring Integration's "stream" namespace.

<i nt-stream stdi n-channel - adapter id="stdin"/>
<i nt-stream stdout-channel -adapter id="stdout"/>

<int:bridge id="echo" input-channel ="stdin" output-channel ="stdout"/>

Of course, the configuration would be similar for other (potentially more useful) Channel Adapter bridges,
such as File to JMS, or Mail to File. The various Channel Adapters will be discussed in upcoming
chapters.

© Note

If no 'output-channel' is defined on a bridge, the reply channel provided by the inbound Message
will be used, if available. If neither output or reply channel is available, an Exception will be thrown.

Spring Integration
3.0.1.RELEASE Reference Manual 37

Spring Integration

4. Message Construction

4.1 Message

The Spring Integration Message is a generic container for data. Any object can be provided as the
payload, and each Message also includes headers containing user-extensible properties as key-value
pairs.

The Message Interface

Here is the definition of the Message interface:
public interface Message<T> {
T get Payl oad();

MessageHeader s get Headers();

The Message is obviously a very important part of the API. By encapsulating the data in a generic
wrapper, the messaging system can pass it around without any knowledge of the data's type. As an
application evolves to support new types, or when the types themselves are modified and/or extended,
the messaging system will not be affected by such changes. On the other hand, when some component
in the messaging system does require access to information about the Message, such metadata can
typically be stored to and retrieved from the metadata in the Message Headers.

Message Headers

Just as Spring Integration allows any Object to be used as the payload of a Message, it also supports
any Object types as header values. In fact, the MessageHeader s class implements the java.util. Map
interface:

public final class MessageHeaders inplenments Map<String, Object>, Serializable {

}

© Note

Even though the MessageHeaders implements Map, it is effectively a read-only implementation.
Any attempt to put a value in the Map will result in an Unsupport edOper at i onExcept i on.
The same applies for remove and clear. Since Messages may be passed to multiple consumers,
the structure of the Map cannot be modified. Likewise, the Message's payload Object can not
be set after the initial creation. However, the mutability of the header values themselves (or the
payload Object) is intentionally left as a decision for the framework user.

As an implementation of Map, the headers can obviously be retrieved by calling get (. .) with the name
of the header. Alternatively, you can provide the expected Class as an additional parameter. Even better,
when retrieving one of the pre-defined values, convenient getters are available. Here is an example of
each of these three options:

Spring Integration
3.0.1.RELEASE Reference Manual 38

Spring Integration

hj ect soneVal ue = nmessage. get Headers(). get ("soneKey");
Custonmer|d custonerld = message. get Headers(). get ("custonerld", Custonerld.class);

Long ti nestanp = nessage. get Header s(). get Ti mest anp() ;

The following Message headers are pre-defined:

Table 4.1. Pre-defined Message Headers

Header Name
ID

TIMESTAMP

Header Type
java.util.UUID

java.lang.Long

CORRELATION_ID

java.lang.Object

REPLY_CHANNEL

ERROR_CHANNEL

SEQUENCE_NUMBER

java.lang.Object (can be a String
MessageChannel)

java.lang.Object (can be a String
MessageChannel)

java.lang.Integer

or

or

SEQUENCE_SIZE

java.lang.Integer

EXPIRATION_DATE

java.lang.Long

PRIORITY java.lang.Integer

Many inbound and outbound adapter implementations will also provide and/or expect certain headers,

and additional user-defined headers can also be configured.

Message ID Generation

When a message transitions through an application, each time it is mutated (e.g. by a transformer) a new
message id is assigned. The message id is a UUI D. Beginning with Spring Integration 3.0, the default
strategy used for id generation is more efficient than the previous j ava. uti | . UUl D. r andonJuUl D)
implementation. It uses simple random numbers based on a secure random seed, instead of creating

a secure random number each time.

A different UUID generation strategy can be selected by declaring a bean that implements

MessageHeader s. | dGener at or in the application context.

© Important

Only one UUID generation strategy can be used in a classloader. This means that if two or more
application contexts are running in the same classloader, they will share the same strategy. If
one of the contexts changes the strategy, it will be used by all contexts. If two or more contexts in
the same classloader declare a bean of type MessageHeader s. | dGener at or , they must all
be an instance of the same class, otherwise the context attempting to replace a custom strategy
will fail to initialize. If the strategy is the same, but parameterized, the strategy in the first context

to initialize will be used.

Spring Integration

3.0.1.RELEASE Reference Manual

39

Spring Integration

In additon to the default strategy, two additional |dGenerators are provided;
MessageHeader s. Jdkl dGener at or uses the previous UUl D.randonJUl D() mechanism;
MessageHeader s. Si nmpl el ncr enent i ngl dGener at or can be used in cases where a UUID is not
really needed and a simple incrementing value is sufficient.

Message Implementations

The base implementation of the Message interface is Generi cMessage<T>, and it provides two
constructors:

new Generi cMessage<T>(T payl oad);

new Generi cMessage<T>(T payl oad, Map<String, Object> headers)

When a Message is created, a random unique id will be generated. The constructor that accepts a Map
of headers will copy the provided headers to the newly created Message.

There is also a convenient implementation of Message designed to communicate error conditions. This
implementation takes Thr owabl e object as its payload:

Error Message nmessage = new Error Message(soneThr owabl e) ;

Throwabl e t = nessage. get Payl oad();

Notice that this implementation takes advantage of the fact that the Generi cMessage base class is
parameterized. Therefore, as shown in both examples, no casting is necessary when retrieving the
Message payload Object.

The MessageBuilder Helper Class

You may notice that the Message interface defines retrieval methods for its payload and headers but
no setters. The reason for this is that a Message cannot be modified after its initial creation. Therefore,
when a Message instance is sent to multiple consumers (e.g. through a Publish Subscribe Channel), if
one of those consumers needs to send a reply with a different payload type, it will need to create a new
Message. As aresult, the other consumers are not affected by those changes. Keep in mind, that multiple
consumers may access the same payload instance or header value, and whether such an instance is
itself immutable is a decision left to the developer. In other words, the contract for Messages is similar to
that of an unmodifiable Collection, and the MessageHeaders' map further exemplifies that; even though
the MessageHeaders class implements j ava. uti | . Map, any attempt to invoke a put operation (or
‘remove’ or ‘clear’) on the MessageHeaders will result in an Unsuppor t edOper ati onExcepti on.

Rather than requiring the creation and population of a Map to pass into the GenericMessage constructor,
Spring Integration does provide a far more convenient way to construct Messages: MessageBui | der .
The MessageBuilder provides two factory methods for creating Messages from either an existing
Message or with a payload Object. When building from an existing Message, the headers and payload
of that Message will be copied to the new Message:

Message<String> nmessagel = MessageBuil der. wit hPayl oad("test")
. set Header ("foo", "bar")
Lbuild();

Message<Stri ng> nmessage2 = MessageBui |l der. fromvessage(nmessagel) . buil d();

assert Equal s("test", nessage2.get Payl oad());
assert Equal s("bar", nessage2.get Headers().get("foo"));

Spring Integration
3.0.1.RELEASE Reference Manual 40

Spring Integration

If you need to create a Message with a new payload but still want to copy the headers from an existing
Message, you can use one of the 'copy' methods.

Message<Stri ng> nmessage3 = MessageBui | der. wi t hPayl oad("t est 3")
. copyHeader s(nessagel. get Header s())
Cbuild();

Message<Stri ng> nessage4 = MessageBui | der. wi t hPayl oad("test4")
. set Header ("fo0", 123)
. copyHeader sl f Absent (nessagel. get Headers())
Cbuild();

assert Equal s("bar", message3. get Headers().get("foo"));
assert Equal s(123, nessage4. get Headers().get("fo00"));

Notice that the copyHeader sl f Absent does not overwrite existing values. Also, in the second
example above, you can see how to set any user-defined header with set Header . Finally, there are
set methods available for the predefined headers as well as a non-destructive method for setting any
header (MessageHeaders also defines constants for the pre-defined header names).

Message<I nt eger > i nport ant Message = MessageBui | der. wi t hPayl oad(99)
.setPriority(5)
. bui ld();

assert Equal s(5, inportant Message. get Headers().getPriority());

Message<I nt eger > | essl nport ant Message = MessageBui | der. fromVessage(i nmport ant Message)
. set Header | f Absent (MessageHeaders. PRICRI TY, 2)
Lbuild();

assert Equal s(2, |esslnportant Message. get Headers().getPriority());

The pri ori ty header is only considered when using a Pri ori t yChannel (as described in the next
chapter). It is defined as java.lang.Integer.

Spring Integration
3.0.1.RELEASE Reference Manual 41

Spring Integration

5. Message Routing

5.1 Routers

Overview

Routers are a crucial element in many messaging architectures. They consume Messages from a
Message Channel and forward each consumed message to one or more different Message Channel

depending on a set of conditions.

Spring Integration provides the following routers out-of-the-box:

» Payload Type Router

» Header Value Router

* Recipient List Router

» XPath Router (Part of the XML Module)

» Error Message Exception Type Router

* (Generic) Router

Router implementations share many configuration parameters. Yet, certain differences exist between
routers. Furthermore, the availability of configuration parameters depends on whether Routers are used
inside or outside of a chain. In order to provide a quick overview, all available attributes are listed in

the 2 tables below.

Table 5.1. Routers Outside of a Chain

Attribute router header xpath payload recipient exception
value router type list type
router router router router

apply-sequence « e e « v v

default-output-channel Ve e " " v v

resolution-required Ve Ve Ve « v v

ignore-send-failures e e Ve e v v

timeout « e e « v v

id « v « « v v

auto-startup e e Ve e v v

input-channel e Ve Ve e v v

order ' ' ' ' 5 ' 5 '

3.0.1.RELEASE

Spring Integration
Reference Manual

42

Spring Integration

Attribute router header xpath payload recipient exception
value router type list type
router router router router

method e

ref &

expression &

header-name e

evaluate-as-string

xpath-expression-ref

converter

Table 5.2. Routers Inside of a Chain

Attribute router header xpath payload recipient exception
value router type list type
router router router router

apply-sequence 4 & v v v

default-output-channel <« v v v v

resolution-required <« v v v v

ignore-send-failures Ve « v v v

timeout Ve Ve v v v

id

auto-startup

input-channel

order

method e

ref &

expression &

header-name e

evaluate-as-string

Spring Integration
3.0.1.RELEASE Reference Manual 43

Spring Integration

Attribute router header xpath payload recipient exception
value router type list type
router router router router

xpath-expression-ref Ve

converter v

© Important

Router parameters have been more standardized across all router implementations with Spring
Integration 2.1. Consequently, there are a few minor changes that leave the possibility of breaking
older Spring Integration based applications.

Since Spring Integration 2.1 the i gnor e- channel - nane-r esol uti on- f ai | ur es attribute is
removed in favor of consolidating its behavior with the r esol ut i on- r equi r ed attribute. Also,
the resol uti on-requi r ed attribute now defaults to t r ue.

Prior to these changes, the resol uti on-required attribute defaulted to f al se causing
messages to be silently dropped when no channel was resolved and no def aul t - out put -
channel was set. The new behavior will require at least one resolved channel and by default
will throw an MessageDel i ver yExcept i on if no channel was determined (or an attempt to
send was not successful).

If you do desire to drop messages silently simply set default-output-
channel =" nul | Channel ".

Common Router Parameters
Inside and Outside of a Chain
The following parameters are valid for all routers inside and outside of chains.

apply-sequence
This attribute specifies whether sequence number and size headers should be added to each
Message. This optional attribute defaults to false.

default-output-channel
If set, this attribute provides a reference to the channel, where Messages should be sent, if channel
resolution fails to return any channels. If no default output channel is provided, the router will throw
an Exception. If you would like to silently drop those messages instead, add the nul | Channel as
the default output channel attribute value.

resolution-required
If true this attribute specifies that channel names must always be successfully resolved to channel
instances that exist. If set to true, a Messagi ngExcept i on will be raised, in case the channel
cannot be resolved. Setting this attribute to false, will cause any unresovable channels to be ignored.
This optional attribute will, if not explicitly set, default to true.

ignore-send-failures
If set to true, failures to send to a message channel will be ignored. If set to false, a
MessageDel i ver yExcept i on will be thrown instead, and if the router resolves more than one
channel, any subsequent channels will not receive the message.

Spring Integration
3.0.1.RELEASE Reference Manual 44

Spring Integration

The exact behavior of this attribute depends on the type of the Channel messages are sent to. For
example, when using direct channels (single threaded), send-failures can be caused by exceptions
thrown by components much further down-stream. However, when sending messages to a simple
gueue channel (asynchronous) the likelihood of an exception to be thrown is rather remote.

@ Note

While most routers will route to a single channel, they are allowed to return more than one
channel name. The reci pi ent-1i st-rout er, for instance, does exactly that. If you set
this attribute to true on a router that only routes to a single channel, any caused exception is
simply swallowed, which usually makes little sense to do. In that case it would be better to
catch the exception in an error flow at the flow entry point. Therefore, setting the i gnor e-
send- f ai | ur es attribute to true usually makes more sense when the router implementation
returns more than one channel name, because the other channel(s) following the one that
fails would still receive the Message.

This attribute defaults to false.

timeout
Theti meout attribute specifies the maximum amount of time in milliseconds to wait, when sending
Messages to the target Message Channels. By default the send operation will block indefinitely.

Top-Level (Outside of a Chain)
The following parameters are valid only across all top-level routers that are ourside of chains.

id
Identifies the underlying Spring bean definition which in case of Routers is an instance of
EventDrivenConsumer or PollingConsumer depending on whether the Router's input-channel is a
SubscribableChannel or PollableChannel, respectively. This is an optional attribute.

auto-startup
This Li f ecycl e attribute signaled if this component should be started during startup of the
Application Context. This optional attribute defaults to true.

input-channel
The receiving Message channel of this endpoint.

order
This attribute defines the order for invocation when this endpoint is connected as a subscriber to a
channel. This is particularly relevant when that channel is using a failover dispatching strategy. It
has no effect when this endpoint itself is a Polling Consumer for a channel with a queue.

Router Implementations

Since content-based routing often requires some domain-specific logic, most use-cases will require
Spring Integration's options for delegating to POJOs using the XML namespace support and/or
Annotations. Both of these are discussed below, but first we present a couple implementations that are
available out-of-the-box since they fulfill common requirements.

PayloadTypeRouter

A Payl oadTypeRout er will send Messages to the channel as defined by payload-type mappings.

Spring Integration
3.0.1.RELEASE Reference Manual 45

Spring Integration

<bean i d="payl oadTypeRout er"
cl ass="org. springframework.integration.router.Payl oadTypeRout er ">
<property nane="channel | dentifierMap">
<n’ap>
<entry key="java.lang. String" val ue-ref="stringChannel"/>
<entry key="java.lang.|nteger" val ue-ref="integerChannel "/ >
</ map>
</ property>
</ bean>

Configuration of the Payl oadTypeRout er is also supported via the namespace provided by Spring
Integration (see Section F.2, “Namespace Support”), which essentially simplifies configuration by
combining the <r out er / > configuration and its corresponding implementation defined using a <bean/
> element into a single and more concise configuration element. The example below demonstrates
a Payl oadTypeRout er configuration which is equivalent to the one above using the namespace
support:

<i nt: payl oad-type-router input-channel="routingChannel">
<int:mappi ng type="java.lang. String" channel ="stri ngChannel " />
<i nt:nappi ng type="java.l ang. | nteger" channel ="i nt eger Channel " />
</int:payl oad-type-router>

HeaderValueRouter

A Header Val ueRout er will send Messages to the channel based on the individual header value
mappings. When a Header Val ueRout er is created it is initialized with the name of the header to be
evaluated. The value of the header could be one of two things:

1. Arbitrary value
2. Channel name

If arbitrary then additional mappings for these header values to channel names is required, otherwise
no additional configuration is needed.

Spring Integration provides a simple namespace-based XML configuration to configure a
Header Val ueRout er . The example below demonstrates two types of namespace-based configuration
for the Header Val ueRout er .

1. Configuration where mapping of header values to channels is required

<i nt: header-val ue-router input-channel ="routingChannel" header-nanme="t est Header" >
<int:mappi ng val ue="sonmeHeader Val ue" channel ="channel A" />
<i nt: nmappi ng val ue="soneC her Header Val ue" channel ="channel B" />

</i nt: header - val ue-rout er >

During the resolution process this router may encounter channel resolution failures, causing an
exception. If you want to suppress such exceptions and send unresolved messages to the default output
channel (identified with the def aul t - out put - channel attribute) set resol uti on-required to
fal se.

Normally, messages for which the header value is not explicitly mapped to a channel will be sent to
the def aul t - out put - channel . However, in cases where the header value is mapped to a channel
name but the channel cannot be resolved, setting the r esol uti on-r equi r ed attribute to f al se will
result in routing such messages to the def aul t - out put - channel .

Spring Integration
3.0.1.RELEASE Reference Manual 46

Spring Integration

© Important
With Spring Integration 2.1 the attribute was changed from i gnore-channel - name-
resol ution-failures toresol uti on-required. Attribute r esol uti on-requi red will
defaultto t r ue.

2. Configuration where mapping of header values to channel names is not required since header values
themselves represent channel names

<i nt: header - val ue-router input-channel ="routingChannel" header-nanme="t est Header"/ >

© Note

Since Spring Integration 2.1 the behavior of resolving channels is more explicit. For example,
if you ommit the def aul t - out put - channel attribute and the Router was unable to resolve
at least one valid channel, and any channel name resolution failures were ignored by setting
resol ution-requiredtofal se, thenaMessageDel i ver yExcepti on is thrown.

Basically, by default the Router must be able to route messages successfully to at least one
channel. If you really want to drop messages, you must also have def aul t - out put - channel
set to nul | Channel .

RecipientListRouter

A Reci pi ent Li st Rout er will send each received Message to a statically defined list of Message
Channels:

<bean i d="reci pi entLi st Router"
cl ass="org. springframework.integration.router.RecipientListRouter">
<property nane="channel s">
<list>
<ref bean="channel 1"/ >
<ref bean="channel 2"/ >
<ref bean="channel 3"/ >
</[list>
</ property>
</ bean>

Spring Integration also provides namespace support for the Reci pi ent Li st Rout er configuration
(see Section F.2, “Namespace Support”) as the example below demonstrates.

<int:recipient-list-router id="custonRouter" input-channel="routingChannel"
ti meout ="1234"
i gnor e-send-failures="true"
appl y- sequence="true">
<int:recipient channel ="channel 1"/ >
<int:recipient channel ="channel 2"/ >
</int:recipient-list-router>

©@ Note
The 'apply-sequence’ flag here has the same effect as it does for a publish-subscribe-channel,
and like a publish-subscribe-channel, it is disabled by default on the recipient-list-router. Refer
to the section called “PublishSubscribeChannel Configuration” for more information.

Another convenient option when configuring a Reci pi ent Li st Rout er is to use Spring Expression
Language (SpEL) support as selectors for individual recipient channels. This is similar to using a Filter

Spring Integration
3.0.1.RELEASE Reference Manual 47

Spring Integration

at the beginning of 'chain' to act as a "Selective Consumer". However, in this case, it's all combined
rather concisely into the router's configuration.

<int:recipient-list-router id="custonRouter" input-channel="routingChannel ">
<int:recipi ent channel ="channel 1" sel ect or - expr essi on="payl oad. equal s('foo')"/>
<int:recipient channel ="channel 2" sel ect or-expressi on="headers. cont ai nsKey("' bar')"/>
</int:recipient-list-router>

In the above configuration a SpEL expression identified by the sel ect or - expr essi on attribute will be
evaluated to determine if this recipient should be included in the recipient list for a given input Message.
The evaluation result of the expression must be a boolean. If this attribute is not defined, the channel
will always be among the list of recipients.

XPath Router

The XPath Router is part of the XML Module. As such, please read chapter Routing XML Messages
Using XPath

Routing and Error handling

Spring Integration also provides a special type-based router called
Error MessageExcept i onTypeRout er for routing Error Messages (Messages whose payl oad
is a Throwabl e instance). Error MessageExcepti onTypeRouter is very similar to the
Payl oadTypeRouter. In fact they are almost identical. The only difference is that
while Payl oadTypeRout er navigates the instance hierarchy of a payload instance (e.g.,
payl oad. get O ass() . get Supercl ass()) to find the most specific type/channel mappings,
the Error MessageExcepti onTypeRout er navigates the hierarchy of 'exception causes' (e.g.,
payl oad. get Cause()) to find the most specific Thr owabl e type/channel mappings.

Below is a sample configuration for Er r or MessageExcept i onTypeRout er.

<i nt:exception-type-router input-channel="i nputChannel"
def aul t - out put - channel =" def aul t Channel ">
<i nt: mappi ng exception-type="java.lang. ||| egal Argunent Excepti on"
channel ="i | | egal Channel "/ >

<i nt: mappi ng exception-type="java. |l ang. Nul | Poi nt er Excepti on"
channel =" npeChannel "/ >
</int:exception-type-router>

<int:channel id="illegal Channel" />
<i nt:channel id="npeChannel" />

Configuring (Generic) Router
Configuring a Content Based Router with XML

The "router" element provides a simple way to connect a router to an input channel and also accepts
the optional def aul t - out put - channel attribute. The r ef attribute references the bean name of a
custom Router implementation (extending Abst r act MessageRout er):

Spring Integration
3.0.1.RELEASE Reference Manual 48

Spring Integration

<int:router ref="payl oadTypeRouter" input-channel ="input1"
def aul t - out put - channel =" def aul t Qut put 1"/ >

<int:router ref="recipientListRouter" input-channel="input2"
def aul t - out put - channel =" def aul t Qut put 2"/ >

<int:router ref="custonRouter" input-channel="input3"
def aul t - out put - channel =" def aul t Qut put 3"/ >

<beans: bean i d="cust onmRout er Bean cl ass="org. f oo. M/Cust onRout er"/ >

Alternatively, r ef may point to a simple POJO that contains the @Router annotation (see below), or the
r ef may be combined with an explicit et hod name. Specifying a met hod applies the same behavior
described in the @Router annotation section below.

<int:router input-channel="input" ref="somePojo" nethod="someMethod"/>

Using a r ef attribute is generally recommended if the custom router implementation is referenced in
other <r out er > definitions. However if the custom router implementation should be scoped to a single
definition of the <r out er >, you may provide an inner bean definition:

<int:router nethod="someMethod" i nput-channel ="input 3"
def aul t - out put - channel =" def aul t Qut put 3" >

<beans: bean cl ass="org. f oo. MyCust onRout er"/ >
</int:router>

© Note

Using both the r ef attribute and an inner handler definition in the same <r out er > configuration
is not allowed, as it creates an ambiguous condition, and an Exception will be thrown.

Routers and the Spring Expression Language (SpEL)

Sometimes the routing logic may be simple and writing a separate class for it and configuring it as a
bean may seem like overkill. As of Spring Integration 2.0 we offer an alternative where you can now use
SpEL to implement simple computations that previously required a custom POJO router.

@ Note

For more information about the Spring Expression Language, please refer to the respective
chapter in the Spring Framework Reference Documentation at:

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/
expressions.html

Generally a SpEL expression is evaluated and the result is mapped to a channel:

<int:router input-channel="inChannel" expressi on="payl oad. paynent Type" >
<i nt:mappi ng val ue="CASH' channel =" cashPaynent Channel "/ >
<i nt: nmappi ng val ue="CREDI T" channel =" aut hori zePaynent Channel "/ >
<i nt:mappi ng val ue="DEBI T* channel ="aut hori zePaynment Channel "/ >
</int:router>

To simplify things even more, the SpEL expression may evaluate to a channel name:

<int:router input-channel="inChannel" expression="payload + ' Channel'"/>

Spring Integration
3.0.1.RELEASE Reference Manual 49

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html

Spring Integration

In the above configuration the result channel will be computed by the SpEL expression which simply
concatenates the value of the payl oad with the literal String 'Channel'.

Another value of SpEL for configuring routers is that an expression can actually return a Col | ecti on,
effectively making every <r out er > a Recipient List Router. Whenever the expression returns multiple
channel values the Message will be forwarded to each channel.

<int:router input-channel="inChannel" expression="headers. channel s"/>

In the above configuration, if the Message includes a header with the name ‘channels' the value of which
is a Li st of channel names then the Message will be sent to each channel in the list. You may also
find Collection Projection and Collection Selection expressions useful to select multiple channels. For
further information, please see:

» Collection Projection

» Collection Selection

Configuring a Router with Annotations

When using @Rout er to annotate a method, the method may return either a MessageChannel or
String type. In the latter case, the endpoint will resolve the channel nhame as it does for the default
output channel. Additionally, the method may return either a single value or a collection. If a collection
is returned, the reply message will be sent to multiple channels. To summarize, the following method
signatures are all valid.

@Rout er
publ i c MessageChannel route(Message nmessage) {...}

@Rout er
publ i c List<MessageChannel > rout e(Message nmessage) {...}

@Rout er
public String route(Foo payload) {...}

@Rout er
public List<String> route(Foo payload) {...}

In addition to payload-based routing, a Message may be routed based on metadata available within the
message header as either a property or attribute. In this case, a method annotated with @Rout er may
include a parameter annotated with @deader which is mapped to a header value as illustrated below
and documented in Section F.5, “Annotation Support”.

@Rout er
public List<String> route(@eader("orderStatus") OrderStatus status)

© Note

For routing of XML-based Messages, including XPath support, see Chapter 31, XML Support -
Dealing with XML Payloads.

Dynamic Routers

So as you can see, Spring Integration provides quite a few different router configurations for common
content-based routing use cases as well as the option of implementing custom routers as POJOs. For
example Payl oadTypeRout er provides a simple way to configure a router which computes channel s

Spring Integration
3.0.1.RELEASE Reference Manual 50

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html#expressions-collection-projection
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html#expressions-collection-selection

Spring Integration

based on the payl oad t ype of the incoming Message while Header Val ueRout er provides the same
convenience in configuring a router which computes channel s by evaluating the value of a particular
Message Header. There are also expression-based (SpEL) routers where the channel is determined
based on evaluating an expression. Thus, these type of routers exhibit some dynamic characteristics.

However these routers all require static configuration. Even in the case of expression-based routers,
the expression itself is defined as part of the router configuration which means that the same expression
operating on the same value will always result in the computation of the same channel. This is acceptable
in most cases since such routes are well defined and therefore predictable. But there are times when
we need to change router configurations dynamically so message flows may be routed to a different
channel.

Example:

You might want to bring down some part of your system for maintenance and temporarily re-reroute
messages to a different message flow. Or you may want to introduce more granularity to your message
flow by adding another route to handle a more concrete type of j ava. | ang. Nunber (in the case of
Payl oadTypeRout er).

Unfortunately with static router configuration to accomplish this, you would have to bring down your
entire application, change the configuration of the router (change routes) and bring it back up. This is
obviously not the solution.

The Dynamic Router pattern describes the mechanisms by which one can change/configure routers
dynamically without bringing down the system or individual routers.

Before we getinto the specifics of how this is accomplished in Spring Integration, let's quickly summarize
the typical flow of the router, which consists of 3 simple steps:

» Step 1 - Compute channel identi fier which is avalue calculated by the router once it receives
the Message. Typically itis a St ri ng or and instance of the actual MessageChannel .

» Step 2 - Resolve channel identifier tochannel name.We'll describe specifics of this process
in a moment.

* Step 3 - Resolve channel nane to the actual MessageChannel

There is not much that can be done with regard to dynamic routing if Step 1 results in the actual instance
of the MessageChannel , simply because the MessageChannel is the final product of any router's job.
However, if Step 1 results in a channel identifier thatis not an instance of MessageChannel ,
then there are quite a few possibilities to influence the process of deriving the Message Channel . Lets
look at couple of the examples in the context of the 3 steps mentioned above:

Payload Type Router

<i nt: payl oad-type-router input-channel ="routingChannel ">
<i nt:nappi ng type="java.lang. String" channel ="channel 1" />
<int:mappi ng type="java.lang.|nteger" channel ="channel 2" />
</int:payl oad-type-router>

Within the context of the Payload Type Router the 3 steps mentioned above would be realized as:

» Step 1-Compute channel identifier which is the fully qualified name of the payload type (e.g.,
java.lang.String).

Spring Integration
3.0.1.RELEASE Reference Manual 51

http://www.eaipatterns.com/DynamicRouter.html

Spring Integration

» Step 2 - Resolve channel identifier tochannel name where the result of the previous step is
used to select the appropriate value from the payload type mapping defined via mappi ng element.

» Step 3 - Resolve channel nane to the actual instance of the MessageChannel as a reference
to a bean within the Application Context (which is hopefully a MessageChannel) identified by the
result of the previous step.

In other words, each step feeds the next step until the process completes.

Header Value Router

<i nt: header-val ue-router input-channel ="input Channel " header - nane="t est Header " >
<i nt: mappi ng val ue="fo0" channel ="fooChannel" />
<int:mappi ng val ue="bar" channel ="bar Channel " />

</int: header-val ue-router>

Similar to the PayloadTypeRouter:

» Step 1- Compute channel identifier which isthe value of the header identified by the header -
nane attribute.

» Step 2 - Resolve channel identifier tochannel name where the result of the previous step is
used to select the appropriate value from the general mapping defined via mappi ng element.

» Step 3 - Resolve channel nane to the actual instance of the MessageChannel as a reference
to a bean within the Application Context (which is hopefully a MessageChannel) identified by the
result of the previous step.

The above two configurations of two different router types look almost identical. However if we look at
the alternate configuration of the Header Val ueRout er we clearly see that there is no mappi ng sub
element:

<i nt: header-val ue-router input-channel="input Channel " header - nane="t est Header ">

But the configuration is still perfectly valid. So the natural question is what about the mapping in the
Step 27?

What this means is that Step 2 is now an optional step. If mappi ng is not defined then the channel
i denti fi er value computed in Step 1 will automatically be treated as the channel nane, which will
now be resolved to the actual MessageChannel as in Step 3. What it also means is that Step 2 is one
of the key steps to provide dynamic characteristics to the routers, since it introduces a process which
allows you to change the way 'channel identifier' resolves to ‘channel name', thus influencing the process
of determining the final instance of the MessageChannel from the initial channel identifier.

For Example:

In the above configuration let's assume that the t est Header value is 'kermit' which is now a channel
i denti fier (Step 1). Since there is no mapping in this router, resolving this channel i dentifier
toachannel nane (Step 2) is impossible and this channel identi fi er isnow treated as channel
name. However what if there was a mapping but for a different value? The end result would still be the
same and that is: if a new value cannot be determined through the process of resolving the 'channel
identifier' to a ‘channel name’, such 'channel identifier' becomes 'channel name'.

So all that is left is for Step 3 to resolve the channel nane (‘kermit’) to an actual instance of the
MessageChannel identified by this name. That basically involves a bean lookup for the name provided.

Spring Integration
3.0.1.RELEASE Reference Manual 52

Spring Integration

So now all messages which contain the header/value pair as t est Header =ker m t are going to be
routed to a MessageChannel whose bean name (id) is 'kermit'.

But what if you want to route these messages to the 'simpson’ channel? Obviously changing a static
configuration will work, but will also require bringing your system down. However if you had access to
the channel identifier map,thenyou could justintroduce a new mapping where the header/value
pair is now ker m t =si npson, thus allowing Step 2 to treat 'kermit' as a channel i dentifi er while
resolving it to 'simpson’ as the channel nane .

The same obviously applies for Payl oadTypeRout er, where you can now remap or remove a
particular payload type mapping. In fact, it applies to every other router, including expression-based
routers, since their computed values will now have a chance to go through Step 2 to be additionally
resolved to the actual channel nane.

In Spring Integration 2.0 the router hierarchy underwent significant refactoring, so that now any
router that is a subclass of the Abstract MessageRout er (which includes all framework defined
routers) is a Dynamic Router simply because the channel | dentifer Map is defined at the
Abst ract MessageRout er level. That map's setter method is exposed as a public method along with
'setChannelMapping' and ‘removeChannelMapping’ methods. These allow you to change/add/remove
router mappings at runtime as long as you have a reference to the router itself. It also means that you
could expose these same configuration options via JMX (see Section 8.1, “JIMX Support”) or the Spring
Integration ControlBus (see Section 8.5, “Control Bus”) functionality.

Manage Router Mappings using the Control Bus

One way to manage the router mappings is through the Control Bus pattern which exposes a Control
Channel where you can send control messages to manage and monitor Spring Integration components,
including routers.

@ Note

For more information about the Control Bus, please see chapter Section 8.5, “Control Bus”.

Typically you would send a control message asking to invoke a particular operation on a particular
managed component (e.g. router). The two managed operations (methods) that are specific to changing
the router resolution process are:

* public voi d set Channel Mappi ng(String channel l dentifier, String channel Nane)
- will allow you to add a new or modify an existing mapping between channel identifier and
channel nane

* public void renmoveChannel Mappi ng(String channelldentifier) - will allow you
to remove a particular channel mapping, thus disconnecting the relationship between channel
i dentifier and channel nane

Manage Router Mappings using JMX

You can also expose a router instance with Spring's JMX support, and then use your favorite JMX client
(e.g., JConsole) to manage those operations (methods) for changing the router's configuration.

© Note

For more information about Spring Integration's JMX suppor, please see chapter JIMX Support.

Spring Integration
3.0.1.RELEASE Reference Manual 53

http://www.eaipatterns.com/ControlBus.html

Spring Integration

5.2 Filter

Introduction

Message Filters are used to decide whether a Message should be passed along or dropped based on
some criteria such as a Message Header value or Message content itself. Therefore, a Message Filter
is similar to a router, except that for each Message received from the filter's input channel, that same
Message may or may not be sent to the filter's output channel. Unlike the router, it makes no decision
regarding which Message Channel to send the Message to but only decides whether to send.

© Note

As you will see momentarily, the Filter also supports a discard channel, so in certain cases it can
play the role of a very simple router (or "switch") based on a boolean condition.

In Spring Integration, a Message Filter may be configured as a Message Endpoint that delegates to an
implementation of the MessageSel ect or interface. That interface is itself quite simple:

public interface MessageSel ector {
bool ean accept (Message<?> nmessage) ;

}
The MessageFi | t er constructor accepts a selector instance:

MessageFilter filter = new MessageFilter(soneSel ector);

In combination with the namespace and SpEL, very powerful filters can be configured with very little
java code.

Configuring Filter

Configuring a Filter with XML

The <filter> element is used to create a Message-selecting endpoint. In addition to "i nput - channel
and out put - channel attributes, it requires a ref. The ref may point to a MessageSel ect or
implementation:

<int:filter input-channel="input" ref="sel ector" output-channel ="output"/>

<bean i d="sel ector" cl ass="exanpl e. MessageSel ector| npl"/>

Alternatively, the et hod attribute can be added at which point the r ef may refer to any object. The
referenced method may expect either the Message type or the payload type of inbound Messages.
The method must return a boolean value. If the method returns 'true’, the Message will be sent to the
output-channel.

<int:filter input-channel="input" output-channel ="out put"
ref ="exanpl eObj ect" met hod="soneBool eanRet ur ni ngMet hod" / >

<bean i d="exanpl eObj ect" cl ass="exanpl e. SomeChj ect"/ >

If the selector or adapted POJO method returns f al se, there are a few settings that control the handling
of the rejected Message. By default (if configured like the example above), rejected Messages will be

Spring Integration
3.0.1.RELEASE Reference Manual 54

Spring Integration

silently dropped. If rejection should instead resultin an error condition, then setthe t hr ow except i on-
on-rej ection attribute to t r ue:

<int:filter input-channel="input" ref="selector"
out put - channel =" out put" t hr ow excepti on-on-rejection="true"/>

If you want rejected messages to be routed to a specific channel, provide that reference as the
di scard- channel :

<int:filter input-channel="input" ref="selector"
out put - channel ="out put" di scard-channel ="rej ect edMessages"/ >

© Note

Message Filters are commonly used in conjunction with a Publish Subscribe Channel. Many filter
endpoints may be subscribed to the same channel, and they decide whether or not to pass the
Message to the next endpoint which could be any of the supported types (e.g. Service Activator).
This provides a reactive alternative to the more proactive approach of using a Message Router
with a single Point-to-Point input channel and multiple output channels.

Using ar ef attribute is generally recommended if the custom filter implementation is referenced in other
<filter> definitions. However if the custom filter implementation is scoped to a single <filter>
element, provide an inner bean definition:

<int:filter nethod="sonmeMet hod" i nput-channel ="i nChannel " out put-channel =" out Channel ">
<beans: bean cl ass="org.foo. My\CustonFilter"/>
</filter>

© Note

Using both the r ef attribute and an inner handler definition in the same <f i | t er > configuration
is not allowed, as it creates an ambiguous condition, and an Exception will be thrown.

With the introduction of SpEL support, Spring Integration added the expr essi on attribute to the filter
element. It can be used to avoid Java entirely for simple filters.

<int:filter input-channel="input" expressi on="payl oad. equal s(' nonsense')"/>

The string passed as the expression attribute will be evaluated as a SpEL expression with the Message
available in the evaluation context. If it is necessary to include the result of an expression in the scope of
the application context you can use the #{} notation as defined in the SpEL reference documentation .

<int:filter input-channel="input"
expressi on="payl oad. mat ches(#{filterPatterns.nonsensePattern})"/>

If the Expression itself needs to be dynamic, then an 'expression’ sub-element may be used. That
provides a level of indirection for resolving the Expression by its key from an ExpressionSource. That
is a strategy interface that you can implement directly, or you can rely upon a version available in
Spring Integration that loads Expressions from a "resource bundle" and can check for modifications
after a given number of seconds. All of this is demonstrated in the following configuration sample where
the Expression could be reloaded within one minute if the underlying file had been modified. If the
ExpressionSource bean is named "expressionSource", then it is not necessary to provide the sour ce
attribute on the <expression> element, but in this case it's shown for completeness.

Spring Integration
3.0.1.RELEASE Reference Manual 55

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#expressions-beandef

Spring Integration

<int:filter input-channel="input" output-channel ="out put">
<i nt:expression key="filterPatterns. exanpl e" source="nyExpressi ons"/>
</int:filter>

<beans: bean i d="nyExpressi ons" i d="nyExpressi ons"
class="0.s.i.expression. Rel oadabl eResour ceBundl eExpr essi onSour ce" >
<beans: property nane="basenane" val ue="config/integration/expressions"/>
<beans: property nane="cacheSeconds" val ue="60"/>

</ beans: bean>

Then, the 'config/integration/expressions.properties’ file (or any more specific version with a locale
extension to be resolved in the typical way that resource-bundles are loaded) would contain a key/value
pair:

‘ filterPatterns. exanpl e=payl oad > 100

© Note

All of these examples that use expr essi on as an attribute or sub-element can also be applied
within transformer, router, splitter, service-activator, and header-enricher elements. Of course,
the semantics/role of the given component type would affect the interpretation of the evaluation
result in the same way that the return value of a method-invocation would be interpreted. For
example, an expression can return Strings that are to be treated as Message Channel names by
a router component. However, the underlying functionality of evaluating the expression against
the Message as the root object, and resolving bean names if prefixed with '@’ is consistent across
all of the core EIP components within Spring Integration.

Configuring a Filter with Annotations

A filter configured using annotations would look like this.

public class PetFilter {

@ilter O
publ i c bool ean dogsOnly(String input) {

}

0 An annotation indicating that this method shall be used as a filter. Must be specified if this class
will be used as a filter.

All of the configuration options provided by the xml element are also available for the @il ter
annotation.

The filter can be either referenced explicitly from XML or, if the @/ssageEndpoi nt annotation is
defined on the class, detected automatically through classpath scanning.

Also see the section called “Advising Endpoints Using Annotations”.

Spring Integration
3.0.1.RELEASE Reference Manual 56

Spring Integration

5.3 Splitter

Introduction

The Splitter is a component whose role is to partition a message in several parts, and send the resulting
messages to be processed independently. Very often, they are upstream producers in a pipeline that
includes an Aggregator.

Programming model

The API for performing splitting consists of one base class, Abst ract MessageSplitter, which
is a MessageHandl er implementation, encapsulating features which are common to splitters,
such as filling in the appropriate message headers CORRELATION_ID, SEQUENCE_SIZE, and
SEQUENCE_NUMBER on the messages that are produced. This enables tracking down the messages
and the results of their processing (in a typical scenario, these headers would be copied over to the
messages that are produced by the various transforming endpoints), and use them, for example, in a
Composed Message Processor scenario.

An excerpt from Abst r act MessageSpl i tt er can be seen below:

public abstract class Abstract MessageSplitter
ext ends Abstract Repl yProduci ngMessageConsuner {

protected abstract Object splitMssage(Message<?> nessage);

}

To implement a specific Splitter in an application, extend Abst r act MessageSpl i tt er and implement
the spl i t Message method, which contains logic for splitting the messages. The return value may be
one of the following:

» a Col | ection (or subclass thereof) or an array of Message objects - in this case the messages
will be sent as such (after the CORRELATION_ID, SEQUENCE_SIZE and SEQUENCE_NUMBER
are populated). Using this approach gives more control to the developer, for example for populating
custom message headers as part of the splitting process.

e aCol | ecti on (or subclass thereof) or an array of non-Message objects - works like the prior case,
except that each collection element will be used as a Message payload. Using this approach allows
developers to focus on the domain objects without having to consider the Messaging system and
produces code that is easier to test.

» aMessage or non-Message object (but not a Collection or an Array) - it works like the previous cases,
except a single message will be sent out.

In Spring Integration, any POJO can implement the splitting algorithm, provided that it defines a method
that accepts a single argument and has a return value. In this case, the return value of the method will
be interpreted as described above. The input argument might either be a Message or a simple POJO.
In the latter case, the splitter will receive the payload of the incoming message. Since this decouples the
code from the Spring Integration API and will typically be easier to test, it is the recommended approach.

Configuring Splitter
Configuring a Splitter using XML

A splitter can be configured through XML as follows:

Spring Integration
3.0.1.RELEASE Reference Manual 57

http://www.eaipatterns.com/DistributionAggregate.html

Spring Integration

<i nt:channel id="inputChannel"/>

<int:splitter id="splitter" O
ref="splitterBean" 0O
met hod="split" O
i nput - channel ="i nput Channel * O
out put - channel =" out put Channel * 0O/ >

<i nt:channel id="out putChannel"/>

<beans: bean i d="splitterBean" class="sanple.PojoSplitter"/>

O Theid of the splitter is optional.

O Areference to a bean defined in the application context. The bean mustimplement the splitting logic
as described in the section above .Optional. If reference to a bean is not provided, then it is assumed
that the payload of the Message that arrived on the i nput - channel is an implementation
of java. util. Col |l ecti on and the default splitting logic will be applied to the Collection,
incorporating each individual element into a Message and sending it to the out put - channel .

0 The method (defined on the bean specified above) that implements the splitting logic. Optional.

The input channel of the splitter. Required.

0 The channel to which the splitter will send the results of splitting the incoming message. Optional
(because incoming messages can specify a reply channel themselves).

O

Using ar ef attribute is generally recommended if the custom splitter implementation may be referenced
in other <spl i tter> definitions. However if the custom splitter handler implementation should be
scoped to a single definition of the <spl i t t er >, configure an inner bean definition:

<int:splitter id="testSplitter" input-channel="inChannel" method="split"
out put - channel =" out Channel " >
<beans: bean cl ass="org.foo. TestSplitter"/>
</int:spliter>

© Note

Using both a ref attribute and an inner handler definition in the same <int:splitter>
configuration is not allowed, as it creates an ambiguous condition and will result in an Exception
being thrown.

Configuring a Splitter with Annotations

The @plitter annotation is applicable to methods that expect either the Message type or the
message payload type, and the return values of the method should be a Col | ect i on of any type. If
the returned values are not actual Message objects, then each item will be wrapped in a Message as
its payload. Each message will be sent to the designated output channel for the endpoint on which the
@Bpl itter isdefined.

@plitter
Li st<Li neltenr extractltens(Order order) {
return order.getltens()

}

Also see the section called “Advising Endpoints Using Annotations”.

Spring Integration
3.0.1.RELEASE Reference Manual 58

Spring Integration

5.4 Aggregator

Introduction

Basically a mirror-image of the Splitter, the Aggregator is a type of Message Handler that receives
multiple Messages and combines them into a single Message. In fact, an Aggregator is often a
downstream consumer in a pipeline that includes a Splitter.

Technically, the Aggregator is more complex than a Splitter, because it is stateful as it must hold the
Messages to be aggregated and determine when the complete group of Messages is ready to be
aggregated. In order to do this it requires a MessageSt or e.

Functionality

The Aggregator combines a group of related messages, by correlating and storing them, until the group
is deemed complete. At that point, the Aggregator will create a single message by processing the whole
group, and will send the aggregated message as output.

Implementing an Aggregator requires providing the logic to perform the aggregation (i.e., the creation
of a single message from many). Two related concepts are correlation and release.

Correlation determines how messages are grouped for aggregation. In Spring Integration correlation is
done by default based on the MessageHeader s. CORRELATI ON_| D message header. Messages with
the same MessageHeader s. CORRELATI ON_I D will be grouped together. However, the correlation
strategy may be customized to allow other ways of specifying how the messages should be grouped
together by implementing a Corr el ati onSt r at egy (see below).

To determine the point at which a group of messages is ready to be processed, a Rel easeSt r at egy
is consulted. The default release strategy for the Aggregator will release a group when all messages
included in a sequence are present, based on the MessageHeader s. SEQUENCE_SI ZE header.
This default strategy may be overridden by providing a reference to a custom Rel easeStr at egy
implementation.

Programming model

The Aggregation API consists of a number of classes:

e The interface MessageG oupProcessor, and its subclasses:
Met hodl nvoki ngAggr egat i ngMessageG oupPr ocessor and
Expr essi onEval uat i ngMessageG oupPr ocessor

* The Rel easeSt r at egy interface and its default implementation
SequenceSi zeRel easeSt r at egy

* The Correl ati onStrat egy interface and its default implementation
Header Attri but eCorrel ati onStrat egy

AggregatingMessageHandler

The Aggr egat i ngMessageHand| er (subclass of Abstract Correl ati ngMessageHandl er) is a
MessageHandl| er implementation, encapsulating the common functionalities of an Aggregator (and
other correlating use cases), which are:

 correlating messages into a group to be aggregated

Spring Integration
3.0.1.RELEASE Reference Manual 59

Spring Integration

* maintaining those messages in a MessageSt or e until the group can be released

deciding when the group can be released
» aggregating the released group into a single message

* recognizing and responding to an expired group

The responsibility of deciding how the messages should be grouped together is delegated to a
Correl ati onSt r at egy instance. The responsibility of deciding whether the message group can be
released is delegated to a Rel easeSt r at egy instance.

Here is a brief highlight of the base Abstract Aggregati ngMessageG oupProcessor (the
responsibility of implementing the aggr egat ePayl oads method is left to the developer):

public abstract class Abstract Aggregati ngMessageG oupProcessor
i mpl enents MessageG oupProcessor {

protected Map<String, Object> aggregat eHeaders(MessageG oup group) {
/] default inplenmentation exists

}

protected abstract Object aggregatePayl oads(MessageG oup group, Map<String, Object>
def aul t Header s) ;

}

The Correl ati onStrat egy is owned by the Abst r act Corr el ati ngMessageHand| er and it has
a default value based on the MessageHeader s. CORRELATI ON_| D message header:

publ i c Abstract Correl ati ngMessageHandl er (MessageG oupPr ocessor processor,
MessageG oupSt ore store,
Correl ationStrategy correl ationStrategy, ReleaseStrategy rel easeStrategy) {

this.correlationStrategy = correlationStrategy == null ?
new Header Attri buteCorrel ati onStrat egy(MessageHeaders. CORRELATION_I D) :
correl ati onStrategy;
this.releaseStrategy = rel easeStrategy == null ? new SequenceSi zeRel easeStrategy() :
rel easeStr at egy;

As for actual processing of the message group, the default implementation is the
Def aul t Aggr egat i ngMessageG oupPr ocessor . It creates a single Message whose payload
is a List of the payloads received for a given group. This works well for simple Scatter Gather
implementations with either a Splitter, Publish Subscribe Channel, or Recipient List Router upstream.

@ Note

When using a Publish Subscribe Channel or Recipient List Router in this type of scenario,
be sure to enable the flag to appl y-sequence. That will add the necessary headers
(CORRELATION_ID, SEQUENCE_NUMBER and SEQUENCE_SIZE). That behavior is enabled
by default for Splitters in Spring Integration, but it is not enabled for the Publish Subscribe
Channel or Recipient List Router because those components may be used in a variety of contexts
in which these headers are not necessary.

When implementing a specific aggregator strategy for an application, a developer can extend
Abst ract Aggr egat i ngMessageG oupProcessor and implement the aggregat ePayl oads

Spring Integration
3.0.1.RELEASE Reference Manual 60

Spring Integration

method. However, there are better solutions, less coupled to the API, for implementing the aggregation
logic which can be configured easily either through XML or through annotations.

In general, any POJO can implement the aggregation algorithm if it provides a method that accepts a
singlej ava. util . Li st as an argument (parameterized lists are supported as well). This method will
be invoked for aggregating messages as follows:

 iftheargumentisaj ava. util . Li st <T>, and the parameter type T is assignable to Message, then
the whole list of messages accumulated for aggregation will be sent to the aggregator

« if the argument is a non-parameterized j ava. uti | . Li st or the parameter type is not assignable to
Message, then the method will receive the payloads of the accumulated messages

« if the return type is not assignable to Message, then it will be treated as the payload for a Message
that will be created automatically by the framework.

© Note

In the interest of code simplicity, and promoting best practices such as low coupling, testability,
etc., the preferred way of implementing the aggregation logic is through a POJO, and using the
XML or annotation support for configuring it in the application.

ReleaseStrategy

The Rel easeSt r at egy interface is defined as follows:

public interface Rel easeStrategy {

bool ean canRel ease(MessageG oup group);

}

In general, any POJO can implement the completion decision logic if it provides a method that accepts
asingle j ava. util.Li st as an argument (parameterized lists are supported as well), and returns a
boolean value. This method will be invoked after the arrival of each new message, to decide whether
the group is complete or not, as follows:

 iftheargumentisaj ava. util . Li st <T>, and the parameter type T is assignable to Message, then
the whole list of messages accumulated in the group will be sent to the method

« if the argument is a non-parametrized j ava. uti | . Li st or the parameter type is not assignable to
Message, then the method will receive the payloads of the accumulated messages

» the method must return true if the message group is ready for aggregation, and false otherwise.
For example:

public class M/Rel easeStrategy {

@rel easeStr at egy
publ i c bool ean canMessagesBeRel eased(Li st <Message<?>>) {...}

public class M/Rel easeStrategy {

@Rel easeStr at egy
publ i c bool ean canMessagesBeRel eased(List<String>) {...}

Spring Integration
3.0.1.RELEASE Reference Manual 61

Spring Integration

As you can see based on the above signatures, the POJO-based Release Strategy will be passed
a Col | ection of not-yet-released Messages (if you need access to the whole Message) or a
Col I ecti on of payload objects (if the type parameter is anything other than Message). Typically
this would satisfy the majority of use cases. However if, for some reason, you need to access the full
MessageG oup then you should simply provide an implementation of the Rel easeSt r at egy interface.

When the group is released for aggregation, all its not-yet-released messages are processed and
removed from the group. If the group is also complete (i.e. if all messages from a sequence have
arrived or if there is no sequence defined), then the group is marked as complete. Any new messages
for this group will be sent to the discard channel (if defined). Setting expi r e- gr oups- upon-
conpl eti on totrue (default is f al se) removes the entire group and any new messages, with the
same correlation id as the removed group, will form a new group. Partial sequences can be released
by using a MessageG oupSt or eReaper together with send- parti al -resul t - on- expi ry being
settotrue.

© Important
To facilitate discarding of late-arriving messages, the aggregator must maintain state about the
group after it has been released. This can eventually cause out of memory conditions. To avoid
such situations, you should consider configuring a MessageG oupSt or eReaper to remove the
group metadata; the expiry parameters should be set to expire groups after it is not expected
that late messages will arrive. For information about configuring a reaper, see the section called
“Managing State in an Aggregator: MessageGroupStore”.

Spring Integration provides an out-of-the box implementation for Rel easeStrategy, the
SequenceSi zeRel easeSt r at egy. This implementation consults the SEQUENCE_NUMBER and
SEQUENCE_SIZE headers of each arriving message to decide when a message group is complete
and ready to be aggregated. As shown above, it is also the default strategy.

CorrelationStrategy
The Correl ati onStr at egy interface is defined as follows:

public interface Correl ationStrategy {

Obj ect get Correl ati onKey(Message<?> nessage) ;

The method returns an Object which represents the correlation key used for associating the message
with a message group. The key must satisfy the criteria used for a key in a Map with respect to the
implementation of equals() and hashCode().

In general, any POJO can implement the correlation logic, and the rules for mapping a message to a
method's argument (or arguments) are the same as for a Ser vi ceAct i vat or (including support for
@Header annotations). The method must return a value, and the value must not be nul | .

Spring Integration provides an out-of-the box implementation for Correl ati onStrat egy, the
Header Attri but eCorrel ati onStrat egy. This implementation returns the value of one of the
message headers (whose name is specified by a constructor argument) as the correlation key. By
default, the correlation strategy is a Header At tri but eCorrel ati onStr at egy returning the value
of the CORRELATION_ID header attribute. If you have a custom header name you would like to use for
correlation, then simply configure that on an instance of Header Attri but eCorr el ati onStr at egy
and provide that as a reference for the Aggregator's correlation-strategy.

Spring Integration
3.0.1.RELEASE Reference Manual 62

Spring Integration

Configuring an Aggregator
Configuring an Aggregator with XML

Spring Integration supports the configuration of an aggregator via XML through the <aggr egat or/ >
element. Below you can see an example of an aggregator.

<channel id="input Channel "/ >

<i nt:aggregator id="nyAggregator" 0O
auto-startup="true" O
i nput - channel ="i nput Channel * O
out put - channel =" out put Channel " 0O
di scard- channel ="t hr owAway Channel " [
message- st or e="per si st ent MessageStore" [
order="1" 0O
send-partial -result-on-expiry="false" 0O
send-ti meout ="1000" O

correlation-strategy="correl ati onStrategyBean" O
correl ati on-strategy-nmethod="correl ate"
correl ati on-strategy-expressi on="headers['foo']"

ref =" aggr egat or Bean"
net hod=" aggr egat e"

rel ease-strategy="rel easeSt r at egyBean"
rel ease- strat egy- net hod="r el ease"

rel ease-strat egy-expression="size() == 5"

expi re-groups- upon-conpl eti on="f al se"
enpt y- gr oup- m n-ti meout =" 60000" />

<i nt:channel id="out put Channel"/>

<int:channel id="throwAwayChannel "/ >

<bean i d="persi stent MessageSt ore" cl ass="org. springfranmework.integration.jdbc.JdbcMessageStore">
<constructor-arg ref="dataSource"/>

</ bean>

<bean i d="aggregat or Bean" cl ass="sanpl e. Poj oAggr egat or"/ >

<bean i d="rel easeStrat egyBean" cl ass="sanpl e. Poj oRel easeStrat egy"/ >

<bean id="correl ati onStrat egyBean" cl ass="sanpl e. Poj oCorrel ati onStrategy"/>

O The id of the aggregator is Optional.

O Lifecycle attribute signaling if aggregator should be started during Application Context startup.
Optional (default is 'true’).

0 The channel from which where aggregator will receive messages. Required.

0 The channel to which the aggregator will send the aggregation results. Optional (because incoming
messages can specify a reply channel themselves via 'replyChannel' Message Header).

O The channel to which the aggregator will send the messages that timed out (if send- parti al -
resul t - on- expi ry is false). Optional.

O Areference to a MessageG oupSt or e used to store groups of messages under their correlation
key until they are complete. Optional, by default a volatile in-memory store.

Spring Integration
3.0.1.RELEASE Reference Manual 63

Spring Integration

Order of this aggregator when more than one handle is subscribed to the same DirectChannel (use
for load balancing purposes). Optional.

Indicates that expired messages should be aggregated and sent to
the ‘output-channel'’ or ‘replyChannel’ once their containing MessageG oup
is expired (see MessageG oupStore.expireMessageG oups(long)). One way
of expiring MessageG oups is by configuring a MessageG oupStoreReaper.
However MessageGroups can alternatively be expired by simply calling
MessageG oupSt or e. expi reMessageG oup(groupl d). That could be accomplished via
a Control Bus operation or by simply invoking that method if you have a reference to the
MessageG oupsSt or e instance. Otherwise by itself this attribute has no behavior. It only serves
as an indicator of what to do (discard or send to the output/reply channel) with Messages that are
still in the MessageG oup that is about to be expired. Optional.

Default - 'false'.

The timeout interval for sending the aggregated messages to the output or reply channel. Optional.
Areference to a bean that implements the message correlation (grouping) algorithm. The bean can
be an implementation of the Cor r el at i onSt r at egy interface or a POJO. In the latter case the
correlation-strategy-method attribute must be defined as well. Optional (by default, the aggregator
will use the MessageHeader s. CORRELATI ON_I D header) .

A method defined on the bean referenced by correl ati on-strat egy, that implements the
correlation decision algorithm. Optional, with restrictions (requires correl ati on-strat egy to
be present).

A SpEL expression representing the correlation strategy. Example: " headers[' foo']". Only
one ofcorrel ati on-strategy orcorrel ati on-strategy-expressi on is allowed.
Areference to a bean defined in the application context. The bean must implement the aggregation
logic as described above. Optional (by default the list of aggregated Messages will become a
payload of the output message).

A method defined on the bean referenced by r ef , that implements the message aggregation
algorithm. Optional, depends on r ef attribute being defined.

A reference to a bean that implements the release strategy. The bean can be an implementation
of the Rel easeStrategy interface or a POJO. In the latter case the release-strategy-
method attribute must be defined as well. Optional (by default, the aggregator will use the
MessageHeader s. SEQUENCE_SI ZE header attribute).

A method defined on the bean referenced by rel ease-strategy, that implements the
completion decision algorithm. Optional, with restrictions (requires r el ease- strat egy to be
present).

A SpEL expression representing the release strategy; the root object for the expression is a
Col | ecti on of Messages. Example: "si ze() == 5". Only one of r el ease-strategy or
rel ease-strat egy- expressi on is allowed.

When set to true (default false), completed groups are removed from the message store, allowing
subsequent messages with the same correlation to form a new group. The default behavior is to
send messages with the same correlation as a completed group to the discard-channel.

Only applies if a MessageG oupSt or eReaper is configured for the <aggregator>'s
MessagesSt or e. By default, when a MessageG oupSt or eReaper is configured to expire partial
groups, empty groups are also removed. Empty groups exist after a group is released normally.
This is to enable the detection and discarding of late-arriving messages. If you wish to expire empty
groups on a longer schedule than expiring partial groups, set this property. Empty groups will then
not be removed from the MessageSt or e until they have not been modified for at least this number
of milliseconds. Note that the actual time to expire an empty group will also be affected by the
reaper's timeout property and it could be as much as this value plus the timeout.

Spring Integration

3.0.1.RELEASE Reference Manual 64

Spring Integration

Using ar ef attribute is generally recommended if a custom aggregator handler implementation may be
referenced in other <aggr egat or > definitions. However if a custom aggregator implementation is only
being used by a single definition of the <aggr egat or >, you can use an inner bean definition (starting
with version 1.0.3) to configure the aggregation POJO within the <aggr egat or > element:

<aggregat or input-channel ="input" method="suni out put-channel ="out put">
<beans: bean cl ass="org. f 00. Poj 0Aggr egat or"/ >
</ aggr egat or >

@ Note

Using both ar ef attribute and an inner bean definition in the same <aggr egat or > configuration
is not allowed, as it creates an ambiguous condition. In such cases, an Exception will be thrown.

An example implementation of the aggregator bean looks as follows:

public cl ass Poj oAggregator {

public Long add(List<Long> results) ({
long total = 0l;
for (long partial Result: results) {
total += partial Result;

}

return total;

An implementation of the completion strategy bean for the example above may be as follows:

public class PojoRel easeStrategy {

publ i c bool ean canRel ease(Li st<Long> nunbers) {
int sum= 0;
for (long nunber: nunbers) {
sum += numnber ;

}

return sum >= maxVal ue;

© Note

Wherever it makes sense, the release strategy method and the aggregator method can be
combined in a single bean.

An implementation of the correlation strategy bean for the example above may be as follows:

public class PojoCorrel ationStrategy {

publ i c Long groupNunbersBylLastDi git(Long nunmber) {
return nunber % 10;

}

}

Spring Integration
3.0.1.RELEASE Reference Manual 65

Spring Integration

For example, this aggregator would group numbers by some criterion (in our case the remainder after
dividing by 10) and will hold the group until the sum of the numbers provided by the payloads exceeds
a certain value.

© Note

Wherever it makes sense, the release strategy method, correlation strategy method and the
aggregator method can be combined in a single bean (all of them or any two).

Aggregators and Spring Expression Language (SpEL)

Since Spring Integration 2.0, the various strategies (correlation, release, and aggregation) may be
handled with SpEL which is recommended if the logic behind such release strategy is relatively simple.
Let's say you have a legacy component that was designed to receive an array of objects. We know that
the default release strategy will assemble all aggregated messages in the List. So now we have two
problems. First we need to extract individual messages from the list, and then we need to extract the
payload of each message and assemble the array of objects (see code below).

public String[] processRel ease(List<Message<String>> messages){
Li st<String> stringList = new ArrayLi st<String>();
for (Message<String> nessage : nessages) {
stringLi st. add(nessage. get Payl oad()) ;

}
return stringlList.toArray(new String[]{})

However, with SpEL such a requirement could actually be handled relatively easily with a one-line
expression, thus sparing you from writing a custom class and configuring it as a bean.

<i nt:aggregator input-channel ="aggChannel "
out put - channel ="r epl yChannel "
expressi on="#t his.![payl oad].toArray()"/>

In the above configuration we are using a Collection Projection expression to assemble a new collection
from the payloads of all messages in the list and then transforming it to an Array, thus achieving the
same result as the java code above.

The same expression-based approach can be applied when dealing with custom Release and
Correlation strategies.

Instead of defining a bean for a custom Correl ati onStr at egy via the correl ati on-strat egy
attribute, you can implement your simple correlation logic via a SpEL expression and configure it via
the correl ati on-strat egy-expressi on attribute.

For example:

correl ati on-strategy-expressi on="payl oad. person.id"

In the above example it is assumed that the payload has an attribute per son with an i d which is going
to be used to correlate messages.

Likewise, for the Rel easeStrat egy you can implement your release logic as a SpEL expression
and configure it via the r el ease- st r at egy- expr essi on attribute. The only difference is that since
ReleaseStrategy is passed the List of Messages, the root object in the SpEL evaluation context is the
List itself. That List can be referenced as #t hi s within the expression.

Spring Integration
3.0.1.RELEASE Reference Manual 66

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#d0e12113

Spring Integration

For example:

rel ease- strat egy- expressi on="#t hi s. si ze() gt 5"

In this example the root object of the SpEL Evaluation Context is the MessageG oup itself, and you are
simply stating that as soon as there are more than 5 messages in this group, it should be released.

Configuring an Aggregator with Annotations

An aggregator configured using annotations would look like this.
public class Waiter {

@\ggregator O

public Delivery aggregatingMet hod(List<Orderlten> itens) {

}

@Rel easeStrategy O
publ i c bool ean rel easeChecker (Li st <Message<?>> nessages) ({

}

@orrel ationStrategy O
public String correlateBy(Orderltemitemn) {

}

O An annotation indicating that this method shall be used as an aggregator. Must be specified if this
class will be used as an aggregator.

O An annotation indicating that this method shall be used as the release strategy of an aggregator.
If not present on any method, the aggregator will use the SequenceSizeReleaseStrategy.

0 An annotation indicating that this method shall be used as the correlation strategy
of an aggregator. If no correlation strategy is indicated, the aggregator will use the
HeaderAttributeCorrelationStrategy based on CORRELATION_ID.

All of the configuration options provided by the xml element are also available for the @Aggregator
annotation.

The aggregator can be either referenced explicitly from XML or, if the @MessageEndpoint is defined
on the class, detected automatically through classpath scanning.

Managing State in an Aggregator: MessageGroupStore

Aggregator (and some other patterns in Spring Integration) is a stateful pattern that requires decisions
to be made based on a group of messages that have arrived over a period of time, all with the same
correlation key. The design of the interfaces in the stateful patterns (e.g. Rel easeSt r at egy) is driven
by the principle that the components (whether defined by the framework or a user) should be able to
remain stateless. All state is carried by the MessageG oup and its management is delegated to the
MessageG oupSt or e.

Spring Integration
3.0.1.RELEASE Reference Manual 67

Spring Integration

public interface MessageG oupStore {
i nt get MessageCount For Al | MessageG oups() ;

i nt get Mar kedMessageCount For Al | MessageG oups() ;

int get MessageG oupCount () ;

MessageG oup get MessageG oup(Obj ect groupl d);

MessageG oup addMessageToGr oup(Obj ect groupld, Message<?> message);
MessageG oup mar kMessageG oup(MessageG oup group);

MessageG oup renpveMessageFr onsroup(Obj ect key, Message<?> nessageToRenove);
MessageG oup mar kMessageFr onGr oup(Obj ect key, Message<?> nessageToMarKk) ;

voi d renpveMessageG oup(Qhj ect groupld);

voi d regi ster MessageG oupExpi ryCal | back(MessageG oupCal | back cal | back) ;

int expi reMessageG oups(long tineout);

}
For more information please refer to the JavaDoc.

The MessageG oupSt or e accumulates state information in MessageG oups while waiting for a
release strategy to be triggered, and that event might not ever happen. So to prevent stale messages
from lingering, and for volatile stores to provide a hook for cleaning up when the application shuts down,
the MessageG oupSt or e allows the user to register callbacks to apply to its MessageG oups when
they expire. The interface is very straightforward:

public interface MessageG oupCall back {

voi d execut e(MessageG oupSt ore nmessageG oupStore, MessageG oup group);

The callback has direct access to the store and the message group so it can manage the persistent
state (e.g. by removing the group from the store entirely).

The MessageG oupSt ore maintains a list of these callbacks which it applies, on demand,
to all messages whose timestamp is earlier than a time supplied as a parameter (see
the regi st er MessageG oupExpi ryCal | back(..) and expi reMessageG oups(..) methods
above).

The expi r eMessageG oups method can be called with a timeout value. Any message older than the
current time minus this value will be expired, and have the callbacks applied. Thus it is the user of the
store that defines what is meant by message group "expiry".

As a convenience for users, Spring Integration provides a wrapper for the message expiry in the form
of a MessageG oupSt or eReaper :

Spring Integration
3.0.1.RELEASE Reference Manual 68

http://static.springsource.org/spring-integration/api/org/springframework/integration/store/MessageGroupStore.html

Spring Integration

<bean i d="reaper" class="org...MssageG oupSt or eReaper" >

<property nane="nmessageG oupStore" ref="nmessageStore"/>
<property nanme="tineout" val ue="30000"/>

</ bean>

<t ask: schedul ed-t asks schedul er="schedul er">

<t ask: schedul ed ref="reaper" method="run" fi xed-rate="10000"/>

</t ask: schedul ed-t asks>

The reaper is a Runnabl e, and all that is happening in the example above is that the message group
store's expire method is being called once every 10 seconds. The timeout itself is 30 seconds.

7]

Note

It is important to understand that the 'timeout' property of the MessageG oupSt or eReaper is
an approximate value and is impacted by the the rate of the task scheduler since this property
will only be checked on the next scheduled execution of the MessageG oupSt or eReaper
task. For example if the timeout is set for 10 min, but the MessageG oupSt or eReaper task is
scheduled to run every 60 min and the last execution of the MessageG oupSt or eReaper task
happened 1 min before the timeout, the MessageG oup will not expire for the next 59 min. So
it is recommended to set the rate at least equal to the value of the timeout or shorter.

In addition to the reaper, the expiry callbacks are invoked when the application shuts down via a lifecycle
callback in the Abst r act Corr el ati ngMessageHandl er.

The Abstract Correl ati ngMessageHandl er registers its own expiry callback, and this is the link
with the boolean flag send- parti al - resul t - on- expi ry in the XML configuration of the aggregator.
If the flag is set to true, then when the expiry callback is invoked, any unmarked messages in groups
that are not yet released can be sent on to the output channel.

©

Important

When using a MessageG& oupSt or eReaper, it is generally recommended to use a separate
MessageSt ore for each correlating endpoint. Otherwise, unexpected results may occur
because one endpoint may remove another endpoint's groups.

Some MessageSt ore implementations allow using the same physical resources, by
partitioning the data; for example, the JdbcMessageSt ore has a regi on property; the
MongoDbMessageSt or e has a col | ecti onNane property.

For more information about MessageSt or e interface and its implementations, please read
Section 8.3, “Message Store”.

5.5 Resequencer

Introduction

Related to the Aggregator, albeit different from a functional standpoint, is the Resequencer.

Functionality

The Resequencer works in a similar way to the Aggregator, in the sense that it uses the
CORRELATION_ID to store messages in groups, the difference being that the Resequencer does not

Spring Integration

3.0.1.RELEASE Reference Manual 69

Spring Integration

process the messages in any way. It simply releases them in the order of their SEQUENCE_NUMBER
header values.

With respect to that, the user might opt to release all messages at once (after the whole sequence,
according to the SEQUENCE_SIZE, has been released), or as soon as a valid sequence is available.

Configuring a Resequencer

Configuring a resequencer requires only including the appropriate element in XML.

A sample resequencer configuration is shown below.

O o0Oood

<i nt:channel id="inputChannel"/>

<i nt:channel id="outputChannel"/>

<i nt:resequencer id="conpl etel yDefi nedResequencer" 0O

i nput - channel ="i nput Channel * O

out put - channel =" out put Channel " O

di scard- channel ="di scardChannel " O

rel ease-partial -sequences="true" 0O
message- st ore="nessageStore" [0

send-partial -result-on-expiry="true" 0O
send-ti meout =" 86420000" 0O

correl ation-strategy="correl ati onStrat egyBean" 0O

correl ati on-strategy-nethod="correlate" 0O

correl ati on-strategy-expressi on="headers['foo']" H
rel ease-strat egy="rel easeSt r at egyBean" H

rel ease-strat egy- net hod="rel ease" K

rel ease- strat egy-expression="size() == 10" &

enpt y- group- m n-ti meout =" 60000" />4

The id of the resequencer is optional.

The input channel of the resequencer. Required.

The channel to which the resequencer will send the reordered messages. Optional.

The channel to which the resequencer will send the messages that timed out (if send- parti al -
resul t-on-tineout is false). Optional.

Whether to send out ordered sequences as soon as they are available, or only after the whole
message group arrives. Optional (false by default).

A reference to a MessageG oupSt or e that can be used to store groups of messages under their
correlation key until they are complete. Optional with default a volatile in-memory store.

Whether, upon the expiration of the group, the ordered group should be sent out (even if some of
the messages are missing). Optional (false by default). See the section called “Managing State in
an Aggregator: MessageGroupStore”.

The timeout for sending out messages. Optional.

Areference to a bean that implements the message correlation (grouping) algorithm. The bean can
be an implementation of the Cor r el at i onSt r at egy interface or a POJO. In the latter case the
correlation-strategy-method attribute must be defined as well. Optional (by default, the aggregator
will use the MessageHeader s. CORRELATI ON_I D header) .

A method defined on the bean referenced by correl ati on-strat egy, that implements the
correlation decision algorithm. Optional, with restrictions (requires correl ati on-strat egy to
be present).

A SpEL expression representing the correlation strategy. Example: "headers[' foo']". Only
oneofcorrel ation-strategy orcorrel ati on-strategy-expression is allowed.

Spring Integration

3.0.1.RELEASE Reference Manual 70

Spring Integration

A reference to a bean that implements the release strategy. The bean can be an implementation
of the Rel easeStrategy interface or a POJO. In the latter case the release-strategy-
method attribute must be defined as well. Optional (by default, the aggregator will use the
MessageHeader s. SEQUENCE_SI ZE header attribute).

A method defined on the bean referenced by rel ease-strategy, that implements the
completion decision algorithm. Optional, with restrictions (requires r el ease- strat egy to be

present).
A SpEL expression representing the release strategy; the root object for the expression is a
Col | ecti on of Messages. Example: "si ze() == 5". Only one of r el ease-strategy or

rel ease-strat egy- expressi on is allowed.

Only applies if a MessageG oupSt or eReaper is configured for the <resequcencer>'s
MessagesSt or e. By default, when a MessageG oupSt or eReaper is configured to expire partial
groups, empty groups are also removed. Empty groups exist after a group is released normally.
This is to enable the detection and discarding of late-arriving messages. If you wish to expire empty
groups on a longer schedule than expiring partial groups, set this property. Empty groups will then
not be removed from the MessagesSt or e until they have not been modified for at least this number
of milliseconds. Note that the actual time to expire an empty group will also be affected by the
reaper's timeout property and it could be as much as this value plus the timeout.

© Note

Since there is no custom behavior to be implemented in Java classes for resequencers, there
is no annotation support for it.

5.6 Message Handler Chain

Introduction

The MessageHandl er Chai n is an implementation of MessageHandl er that can be configured as
a single Message Endpoint while actually delegating to a chain of other handlers, such as Filters,
Transformers, Splitters, and so on. This can lead to a much simpler configuration when several handlers
need to be connected in a fixed, linear progression. For example, it is fairly common to provide a
Transformer before other components. Similarly, when providing a Filter before some other component
in a chain, you are essentially creating a Selective Consumer. In either case, the chain only requires
a single i nput - channel and a single out put - channel eliminating the need to define channels for
each individual component.

@ Tip

Spring Integration's Fi | t er provides a boolean property t hr onExcepti onOnRej ecti on.
When providing multiple Selective Consumers on the same point-to-point channel with different
acceptance criteria, this value should be set to 'true' (the default is false) so that the dispatcher
will know that the Message was rejected and as a result will attempt to pass the Message on to
other subscribers. If the Exception were not thrown, then it would appear to the dispatcher as if
the Message had been passed on successfully even though the Filter had dropped the Message
to prevent further processing. If you do indeed want to "drop" the Messages, then the Filter's
‘discard-channel' might be useful since it does give you a chance to perform some operation with
the dropped message (e.g. send to a IMS queue or simply write to a log).

The handler chain simplifies configuration while internally maintaining the same degree of loose
coupling between components, and it is trivial to modify the configuration if at some point a non-linear
arrangement is required.

Spring Integration
3.0.1.RELEASE Reference Manual 71

http://www.eaipatterns.com/MessageSelector.html

Spring Integration

Internally, the chain will be expanded into a linear setup of the listed endpoints, separated by anonymous
channels. The reply channel header will not be taken into account within the chain: only after the last
handler is invoked will the resulting message be forwarded on to the reply channel or the chain's output
channel. Because of this setup all handlers except the last required to implement the MessageProducer
interface (which provides a 'setOutputChannel()' method). The last handler only needs an output channel
if the outputChannel on the MessageHandlerChain is set.

© Note

As with other endpoints, the out put - channel is optional. If there is a reply Message at the
end of the chain, the output-channel takes precedence, but if not available, the chain handler will
check for a reply channel header on the inbound Message as a fallback.

In most cases there is no need to implement MessageHandlers yourself. The next section will focus on
namespace support for the chain element. Most Spring Integration endpoints, like Service Activators
and Transformers, are suitable for use within a MessageHand| er Chai n.

Configuring a Chain

The <chain> element provides an i nput - channel attribute, and if the last element in the chain is
capable of producing reply messages (optional), it also supports an out put - channel attribute. The
sub-elements are then filters, transformers, splitters, and service-activators. The last element may also
be a router or an outbound-channel-adapter.

<i nt:chain input-channel ="i nput" out put-channel ="out put">
<int:filter ref="someSel ector" throw exception-on-rejection="true"/>
<i nt: header-enri cher>
<i nt: header name="foo" val ue="bar"/>
</int: header-enricher>
<int:service-activator ref="soneService" nethod="soneMet hod"/>
</int:chai n>

The <header-enricher> element used in the above example will set a message header named "foo" with
a value of "bar" on the message. A header enricher is a specialization of Tr ansf or mer that touches
only header values. You could obtain the same result by implementing a MessageHandler that did the
header modifications and wiring that as a bean, but the header-enricher is obviously a simpler option.

The <chain> can be configured as the last 'black-box' consumer of the message flow. For this solution
it is enough to put at the end of the <chain> some <outbound-channel-adapter>:

<i nt:chain input-channel ="input">
<si-xm : marshal l i ng-transformer marshal |l er="marshaller" result-type="StringResult" />
<int:service-activator ref="soneService" nethod="sonmeMet hod"/>
<i nt: header-enricher>
<i nt:header nane="foo" val ue="bar"/>
</int: header-enricher>
<i nt:|oggi ng- channel - adapter |evel ="I NFO' |og-full-nmessage="true"/>
</int:chai n>

Disallowed Attributes and Elements

It is important to note that certain attributes, such as order and input-channel are not allowed to be
specified on components used within a chain. The same is true for the poller sub-element.

Spring Integration
3.0.1.RELEASE Reference Manual 72

Spring Integration

© Important

For the Spring Integration core components, the XML Schema itself will enforce some of
these constraints. However, for non-core components or your own custom components, these
constraints are enforced by the XML namespace parser, not by the XML Schema.

These XML namespace parser constraints were added with Spring Integration 2.2. The XML
namespace parser will throw an BeanDef i ni ti onPar si ngExcepti on if you try to use
disallowed attributes and elements.

'id" Attribute

Beginning with Spring Integration 3.0, if a chain element is given an id, the bean name for the element is
a combination of the chain's id and the id of the element itself. Elements without an id are not registered
as beans, but they are given conponent Nanes that include the chain id. For example:

<int:chain id="fooChain" input-channel ="input">
<int:service-activator id="fooService" ref="someService" nmethod="sonmeMt hod"/>
<int:object-to-json-transformer/>

</int:chai n>

e The <chai n> root element has an id 'fooChain'. So, the Abst ract Endpoi nt implementation
(Pol I i ngConsuner or Event Dri venConsurer , depending on the input-channel type) bean takes
this value as it's bean name.

* The MessageHandl er Chai n bean acquires a bean alias 'fooChain.handler', which allows direct
access to this bean from the BeanFact ory.

e The <servi ce-activator> is not a fully-fledged Messaging Endpoint (Pol | i ngConsuner or
Event Dri venConsuner) - it is simply a MessageHand| er within the <chai n>. In this case, the
bean name registered with the BeanFact ory is 'fooChain$child.fooService.handler'.

* The componentName of this Ser vi ceAct i vat i ngHandl er takes the same value, but without the
".handler' suffix - ‘fooChain$child.fooService'.

e The last <chai n> sub-component, <obj ect-to-json-transforner>, doesn't have an id
attribute. Its componentName is based on its position in the <chai n>. In this case, it is 'fooChain
$child#1'. (The final element of the name is the order within the chain, beginning with '#0'). Note, this
transformer isn't registered as a bean within the application context, so, it doesn't get a beanName,
however its componentName has a value which is useful for logging etc.

The id attribute for <chai n> elements allows them to be eligible for IMX export and they are trackable
via Message History. They can also be accessed from the BeanFact or y using the appropriate bean
name as discussed above.

@ Tip

It is useful to provide an explicit id attribute on <chai n>s to simplify the identification of sub-
components in logs, and to provide access to them from the BeanFact ory etc.

Calling a Chain from within a Chain

Sometimes you need to make a nested call to another chain from within a chain and then come back and
continue execution within the original chain. To accomplish this you can utilize a Messaging Gateway
by including a <gateway> element. For example:

Spring Integration
3.0.1.RELEASE Reference Manual 73

Spring Integration

<int:chain id="main-chain" input-channel ="in" out put-channel =" out
<i nt: header-enricher>
<i nt: header nanme="nanme" val ue="Many" />
</int:header-enricher>
<int:service-activator>
<bean cl ass="org. f 00. Sanpl eServi ce" />
</int:service-activator>
<i nt:gat eway request-channel ="input A"/ >
</int:chai n>

<int:chain id="nested-chain-a" input-channel ="input A">
<i nt: header-enricher>
<i nt:header nane="nane" val ue="Me" />
</int:header-enricher>
<i nt:gateway request-channel ="inputB"/>
<int:service-activator>
<bean cl ass="org. f 00. Sanpl eServi ce" />
</int:service-activator>
</int:chai n>

<int:chain id="nested-chain-b" input-channel ="input B">
<i nt: header-enricher>
<i nt: header nane="nane" val ue="Jack" />
</int:header-enricher>
<int:service-activator>
<bean cl ass="org. f 00. Sanpl eServi ce" />
</int:service-activator>
</int:chai n>

"

In the above example the nested-chain-a will be called at the end of main-chain processing by the
'‘gateway' element configured there. While in nested-chain-a a call to a nested-chain-b will be made
after header enrichment and then it will come back to finish execution in nested-chain-b. Finally the flow
returns to the main-chain. When the nested version of a <gateway> element is defined in the chain, it
does not require the ser vi ce- i nt er f ace attribute. Instead, it simple takes the message in its current
state and places it on the channel defined via the r equest - channel attribute. When the downstream
flow initiated by that gateway completes, a Message will be returned to the gateway and continue its

journey within the current chain.

Spring Integration
3.0.1.RELEASE Reference Manual

74

Spring Integration

6. Message Transformation

6.1 Transformer

Introduction

Message Transformers play a very important role in enabling the loose-coupling of Message Producers
and Message Consumers. Rather than requiring every Message-producing component to know what
type is expected by the next consumer, Transformers can be added between those components.
Generic transformers, such as one that converts a String to an XML Document, are also highly reusable.

For some systems, it may be best to provide a Canonical Data Model, but Spring Integration's general
philosophy is not to require any particular format. Rather, for maximum flexibility, Spring Integration
aims to provide the simplest possible model for extension. As with the other endpoint types, the use of
declarative configuration in XML and/or Annotations enables simple POJOs to be adapted for the role
of Message Transformers. These configuration options will be described below.

© Note

For the same reason of maximizing flexibility, Spring does not require XML-based Message
payloads. Nevertheless, the framework does provide some convenient Transformers for dealing
with XML-based payloads if that is indeed the right choice for your application. For more
information on those transformers, see Chapter 31, XML Support - Dealing with XML Payloads.

Configuring Transformer

Configuring Transformer with XML

The <transformer> element is used to create a Message-transforming endpoint. In addition to "input-
channel" and "output-channel” attributes, it requires a "ref". The "ref" may either point to an Object that
contains the @Transformer annotation on a single method (see below) or it may be combined with an
explicit method name value provided via the "method" attribute.

<int:transforner id="testTransformer" ref="testTransformerBean" input-channel="i nChannel "
met hod="t ransform' out put - channel =" out Channel "/ >
<beans: bean i d="test Transf or mer Bean" cl ass="org. foo. Test Transformer" />

Using a "ref" attribute is generally recommended if the custom transformer handler implementation
can be reused in other <transf or mer > definitions. However if the custom transformer handler
implementation should be scoped to a single definition of the <t r ansf or mer >, you can define an inner
bean definition:

<int:transforner id="testTransforner" input-channel="inChannel" nethod="transforni
out put - channel =" out Channel ">
<beans: bean cl ass="org. foo. Test Transforner"/>
</ transf or nmer >

© Note

Using both the "ref" attribute and an inner handler definition in the same <t ransf or mer >
configuration is not allowed, as it creates an ambiguous condition and will result in an Exception
being thrown.

Spring Integration
3.0.1.RELEASE Reference Manual 75

http://www.eaipatterns.com/CanonicalDataModel.html

Spring Integration

The method that is used for transformation may expect either the Message type or the payload type of
inbound Messages. It may also accept Message header values either individually or as a full map by
using the @Header and @Header s parameter annotations respectively. The return value of the method
can be any type. If the return value is itself a Message, that will be passed along to the transformer's
output channel.

As of Spring Integration 2.0, a Message Transformer's transformation method can no longer return
nul | . Returning nul | will result in an exception since a Message Transformer should always be
expected to transform each source Message into a valid target Message. In other words, a Message
Transformer should not be used as a Message Filter since there is a dedicated <filter> option for that.
However, if you do need this type of behavior (where a component might return NULL and that should
not be considered an error), a service-activator could be used. Its r equi r es- r epl y value is FALSE
by default, but that can be set to TRUE in order to have Exceptions thrown for NULL return values as
with the transformer.

Transformers and Spring Expression Language (SpEL)

Just like Routers, Aggregators and other components, as of Spring Integration 2.0 Transformers can also
benefit from SpEL support (http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/
html/expressions.html) whenever transformation logic is relatively simple.

<int:transformer input-channel="inChannel"

out put - channel =" out Channel "

expressi on="payl oad. t oUpper Case() + '- [' + T(java.lang.System).currentTineMIlis() +
BTN

In the above configuration we are achieving a simple transformation of the payload with a simple SpEL
expression and without writing a custom transformer. Our payload (assuming String) will be upper-cased
and concatenated with the current timestamp with some simple formatting.

Common Transformers

There are also a few Transformer implementations available out of the box. Because, it is fairly
common to use the toString() representation of an Object, Spring Integration provides an
nj ect ToStri ngTr ansf or mer whose output is a Message with a String payload. That String is the
result of invoking the toString() operation on the inbound Message's payload.

<int:object-to-string-transforner input-channel="in" output-channel="out"/>

A potential example for this would be sending some arbitrary object to the 'outbound-channel-adapter' in
the file namespace. Whereas that Channel Adapter only supports String, byte-array, orj ava. i o. Fi |l e
payloads by default, adding this transformer immediately before the adapter will handle the necessary
conversion. Of course, that works fine as long as the result of the t oSt ri ng() call is what you want
to be written to the File. Otherwise, you can just provide a custom POJO-based Transformer via the
generic 'transformer' element shown previously.

Q@ Tip
When debugging, this transformer is not typically necessary since the 'logging-channel-adapter’
is capable of logging the Message payload. Refer to the section called “Wire Tap” for more detail.

© Note

The object-to-string-transformer is very simple; it invokes toString() on the inbound
payload. There are two exceptions to this (since 3.0): if the payload is a char[], it invokes

Spring Integration
3.0.1.RELEASE Reference Manual 76

Spring Integration

new String(payl oad); if the payload is a byt e[], it invokes new Stri ng(payl oad,
char set), where char set is "UTF-8" by default. The char set can be modified by supplying
the charset attribute on the transformer.

For more sophistication (such as selection of the charset dynamically, at runtime), you can use
a SpEL expression-based transformer instead; for example:

<int:transfornmer input-channel="in" output-channel ="out"
expressi on="new j ava. | ang. Stri ng(payl oad, headers[' myCharset']" />

If you need to serialize an Object to a byte array or deserialize a byte array back into an Object, Spring
Integration provides symmetrical serialization transformers. These will use standard Java serialization
by default, but you can provide an implementation of Spring 3.0's Serializer or Deserializer strategies
via the 'serializer' and 'deserializer' attributes, respectively.

<i nt: payl oad-seri al i zi ng-transforner input-channel ="objectsln" output-channel ="bytesCQut"/>

<i nt: payl oad- deseri al i zi ng-transforner input-channel ="bytesln" out put-
channel =" obj ect sQut "/ >

Object-to-Map Transformer

Spring Integration also provides Object-to-Map and Map-to-Object transformers which utilize the Spring
Expression Language (SpEL) to serialize and de-serialize the object graphs. The object hierarchy is
introspected to the most primitive types (String, int, etc.). The path to this type is described via SpEL,
which becomes the key in the transformed Map. The primitive type becomes the value.

For example:

public class Parent{
private Child child;
private String nane;
/| setters and getters are onitted

}

public class Child{
private String nane;
private List<String> ni ckNanes;
/| setters and getters are onmitted

will be transformed to a Map which looks like this: {person. nane=Geor ge,
person. chil d. nane=Jenna, person.child.nickNanes[0]=Binbo . . . etc}

The SpEL-based Map allows you to describe the object structure without sharing the actual types
allowing you to restore/rebuild the object graph into a differently typed Object graph as long as you
maintain the structure.

For example: The above structure could be easily restored back to the following Object graph via the
Map-to-Object transformer:

Spring Integration
3.0.1.RELEASE Reference Manual 77

Spring Integration

public class Father {
private Kid child;
private String nane;
/| setters and getters are onitted

}

public class Kid {
private String nane;
private List<String> ni ckNanes;
/| setters and getters are onitted

If you need to create a "structured" map, you can provide the ‘flatten’ attribute. The default value for
this attribute is 'true’ meaning the default behavior; if you provide a ‘false’ value, then the structure will
be a map of maps.

For example:

public class Parent {
private Child child;
private String nane;
/'l setters and getters are omtted

}

public class Child {

private String nane;

private List<String> nickNanes;

/'l setters and getters are omtted

}

... will be transformed to a Map which looks like this: { name=Geor ge, chil d={nanme=Jenna,
ni ckNames=[Bi nbo, ...]}}

To configure these transformers, Spring Integration provides namespace support Object-to-Map:

<i nt:object-to-nmap-transforner input-channel="directlnput" output-channel ="output"/>

or

<i nt:object-to-map-transforner input-channel="directlnput" output-
channel ="out put" flatten="fal se"/>

Map-to-Object

<i nt: map-to-obj ect-transformer input-channel="input"
out put - channel =" out put "
type="org. f oo. Person"/>

or

<i nt: map-to-obj ect-transformer input-channel="inputA"
out put - channel =" out put A"
ref ="person"/>
<bean i d="person" class="org.foo.Person" scope="prototype"/>

© Note

NOTE: 'ref' and 'type' attributes are mutually exclusive. You can only use one. Also, if using the
'ref attribute, you must point to a 'prototype’ scoped bean, otherwise a BeanCreationException
will be thrown.

Spring Integration
3.0.1.RELEASE Reference Manual 78

Spring Integration

JSON Transformers

Object to JISON and JSON to Object transformers are provided.

<i nt:object-to-json-transforner input-channel="objectMapperl|nput"/>

<int:json-to-object-transfornmer input-channel="objectMapper! nput"

type="foo. MyDonmai nChj ect"/ >

These use a vanilla Jackson ObjectMapper by default. If you wish to customize the ObjectMapper
(for example, to configure the 'ALLOW_COMMENTS' feature when parsing JSON), you can supply a
reference to your custom ObjectMapper bean using the object-mapper attribute.

o

<int:json-to-object-transforner input-channel="objectMapper! nput"

type="foo. MyDonmai nChj ect" obj ect - napper =" cust onObj ect Mapper"/ >

Note

Beginning with version 3.0, the obj ect - mapper attribute references an instance of a new
strategy interface JsonObj ect Mapper . This abstraction allows multiple implementations of json
mappers to be used. Implementations that wrap Jackson 1.x and Jackson 2 are provided, with
the version being detected on the classpath. These classes are JacksonJsonChj ect Mapper
and Jackson2JsonCbj ect Mapper .

For backward compatibility, a simple Jackson 1.x Cbj ect Mapper can be provided instead of a
JsonObj ect Mapper . This will be removed in a future release.

Important

If there are requirements to use both Jackson libraries in the same application, keep in mind
that before version 3.0, the JSON transformers used only Jackson 1.x and, from 3.0 on, the
framework will select Jackson 2 by default, if both are on the classpath. So, to avoid unexpected
issues with Jackson's mapping features, when using annotations, there may be a need to apply
annotations from both Jacksons on domain classes:

@r g. codehaus. j ackson. annot at e. Jsonl gnor ePr operti es(i gnor eUnknown=t r ue)
@om fasterxnm .jackson. annot ati on. Jsonl gnor eProperti es(i gnor eUnknown=t r ue)
public class Foo {

@r g. codehaus. j ackson. annot at e. JsonPr operty("fooBar")
@om fasterxnl . jackson. annot ati on. JsonProperty("fooBar")
public Object bar;

You may wish to consider using a FactoryBean or simple factory method to create the
JsonObj ect Mapper with the required characteristics.

public class Object MapperFactory {

public static Jackson2JsonObj ect Mapper get Mapper () {
bj ect Mapper mapper = new Obj ect Mapper () ;
mapper . conf i gure(JsonPar ser. Feat ur e. ALLONV COMMVENTS, true);
return new Jackson2JsonCbhj ect Mapper (mapper) ;

Spring Integration

3.0.1.RELEASE Reference Manual 79

http://jackson.codehaus.org
https://github.com/FasterXML

Spring Integration

<bean i d="cust ombj ect Mapper" cl ass="fo00. Obj ect Mapper Fact ory"
fact ory- net hod="get Mapper"/ >

© Important

Beginning with version 2.2, the obj ect -t o- j son-t r ansf or ner sets the content-type header
to appl i cati on/j son, by default, if the input message does not already have that header
present.

It you wish to set the content type header to some other value, or explicitly overwrite any existing
header with some value (including appl i cati on/j son), use the cont ent - t ype attribute. If
you wish to suppress the setting of the header, set the cont ent - t ype attribute to an empty
string (""). This will result in a message with no cont ent - t ype header, unless such a header
was present on the input message.

Beginning with version 3.0, the Cbj ect ToJsonTr ansf or mer adds headers, reflecting the source
type, to the message. Similarly, the JsonToObj ect Tr ansf or mer can use those type headers when
converting the JSON to an object. These headers are mapped in the AMQP adapters so that they are
entirely compatible with the Spring-AMQP JsonMessageConverter.

This enables the following flows to work without any special configuration...
... ->angp- out bound- adapter---->
- - -->angp- i nbound- adapt er - >j son-t o- obj ect-transformer->. ..

Where the outbound adapter is configured with a JsonMessageConver t er and the inbound adapter
uses the default Si npl eMessageConverter.

..->0bj ect-to-json-transforner->anqgp- out bound- adapter---->
- --->angp- i nbound- adapter->. ..

Where the outbound adapter is configured with a Si npl eMessageConvert er and the inbound adapter
uses the default JsonMessageConverter.

..->0bj ect-to-json-transforner->anmgp-out bound- adapter---->
- --->angp- i nbound- adapt er - >j son-t o- obj ect -transf or mer - >

Where both adapters are configured with a Si npl eMessageConverter.

© Note

When using the headers to determine the type, you should not provide a cl ass attribute,
because it takes precedence over the headers.

In addition to JSON Transformers, Spring Integration provides a built-in #jsonPath SpEL function for
use in expressions. For more information see Appendix A, Spring Expression Language (SpEL).

#xpath SpEL Function

Since version 3.0, Spring Integration also provides a built-in #xpath SpEL function for use in expressions.
For more information see Section 31.9, “#xpath SpEL Function”.

Spring Integration
3.0.1.RELEASE Reference Manual 80

http://docs.spring.io/spring-amqp/api/

Spring Integration

Configuring a Transformer with Annotations

The @ ansf or mer annotation can also be added to methods that expect either the Message type or
the message payload type. The return value will be handled in the exact same way as described above
in the section describing the <transformer> element.

@r ansf or ner
Order generateOrder (String productld) {
return new O der(productld);

}

Transformer methods may also accept the @Header and @Headers annotations that is documented
in Section F.5, “Annotation Support”

@r ansf or ner
Order generateOrder(String productld, @leader("custonmerNane") String customer) {
return new Order(productld, customer);

}

Also see the section called “Advising Endpoints Using Annotations”.

Header Filter

Some times your transformation use case might be as simple as removing a few headers. For such a
use case, Spring Integration provides a Header Filter which allows you to specify certain header names
that should be removed from the output Message (e.g. for security reasons or a value that was only
needed temporarily). Basically the Header Filter is the opposite of the Header Enricher. The latter is
discussed in the section called “Header Enricher”

<int:header-filter input-channel="input Channel "
out put - channel =" out put Channel * header - nanes="1 ast Nane, state"/>

As you can see, configuration of a Header Filter is quite simple. It is a typical endpoint with input/output
channels and a header - nanes attribute. That attribute accepts the names of the header(s) (delimited
by commas if there are multiple) that need to be removed. So, in the above example the headers named
'lastName' and 'state’ will not be present on the outbound Message.

6.2 Content Enricher

Introduction

At times you may have a requirement to enhance a request with more information than was provided by
the target system. The Content Enricher pattern describes various scenarios as well as the component
(Enricher), which allows you to address such requirements.

The Spring Integration Cor e module includes 2 enrichers:

» Header Enricher

» Payload Enricher

Furthermore, several Adapter specific Header Enrichers are included as well:

» XPath Header Enricher (XML Module)

» Mail Header Enricher (Mail Module)

Spring Integration
3.0.1.RELEASE Reference Manual 81

http://www.eaipatterns.com/DataEnricher.html

Spring Integration

* XMPP Header Enricher (XMPP Module)

Please go to the adapter specific sections of this reference manual to learn more about those adapters.

For more information regarding expressions support, please see Appendix A, Spring Expression
Language (SpEL).

Header Enricher

If you only need to add headers to a Message, and they are not dynamically determined by the Message
content, then referencing a custom implementation of a Transformer may be overkill. For that reason,
Spring Integration provides support for the Header Enricher pattern. It is exposed via the <header -
enri cher > element.

<i nt: header-enricher input-channel="in" output-channel ="out">
<i nt: header nane="foo" val ue="123"/>
<i nt: header nane="bar" ref="soneBean"/>
</int:header-enricher>

The Header Enricher also provides helpful sub-elements to set well-known header names.

<i nt: header-enricher input-channel="in" output-channel ="out">
<int:error-channel ref="applicationErrorChannel"/>
<int:reply-channel ref="quoteReplyChannel"/>
<int:correlation-id val ue="123"/>
<int:priority val ue="H GHEST"/ >
<i nt:header nane="bar" ref="sonmeBean"/>
</int:header-enricher>

In the above configuration you can clearly see that for well-known headers such as err or Channel ,
correlationld, priority, repl yChannel etc., instead of using generic <header> sub-elements
where you would have to provide both header 'name’ and 'value', you can use convenient sub-elements
to set those values directly.

POJO Support

Often a header value cannot be defined statically and has to be determined dynamically based on some
content in the Message. That is why Header Enricher allows you to also specify a bean reference using
the r ef and net hod attribute. The specified method will calculate the header value. Let's look at the
following configuration:

<i nt: header-enricher input-channel="in" output-channel ="out">
<i nt: header name="foo0" nethod="conputeVal ue" ref="nyBean"/>
</int:header-enricher>

<bean i d="nyBean" cl ass="foo0. bar. M/Bean"/>

public class MyBean {
public String conputeVal ue(String payl oad) {
return payl oad. t oUpper Case() + "_US";
}

You can also configure your POJO as inner bean:

Spring Integration
3.0.1.RELEASE Reference Manual 82

Spring Integration

<int:header-enricher input-channel ="inputChannel" out put-channel =" out put Channel ">
<i nt: header nane="sonme_header">
<bean cl ass="org. MyEnri cher"/>
</int: header>
</int:header-enricher>

as well as point to a Groovy script:

<i nt:header-enricher input-channel ="inputChannel" out put-channel =" out put Channel ">
<i nt: header nanme="some_header">
<int-groovy:script |ocation="org/ Sanpl eG oovyHeader Enri cher. groovy"/>
</i nt: header >
</int:header-enricher>

SpEL Support

In Spring Integration 2.0 we have introduced the convenience of the Spring Expression Language
(SpEL) to help configure many different components. The Header Enricher is one of them. Looking
again at the POJO example above, you can see that the computation logic to determine the header
value is actually pretty simple. A natural question would be: "is there a simpler way to accomplish this?".
That is where SpEL shows its true power.

<i nt: header-enricher input-channel="in" output-channel ="out">
<i nt:header nanme="foo0" expression="payl oad.toUpperCase() + '_US "/>
</int:header-enricher>

As you can see, by using SpEL for such simple cases, we no longer have to provide a separate class
and configure it in the application context. All we need is the expression attribute configured with a valid
SpEL expression. The 'payload' and 'headers' variables are bound to the SpEL Evaluation Context,
giving you full access to the incoming Message.

Header Channel Registry

Starting with Spring Integration 3.0, a new sub-element <i nt : header - channel s-to-string/>is
available; it has no attributes. This converts existing r epl yChannel and error Channel headers
(whenthey are a MessageChannel) to a String and stores the channel(s) in aregistry for later resolution
when it is time to send a reply, or handle an error. This is useful for cases where the headers might be
lost; for example when serializing a message into a message store or when transporting the message
over JMS. If the header does not already exist, or it is not a MessageChannel , no changes are made.

Use of this functionality requires the presence of a Header Channel Regi stry bean. By default,
the framework creates a Def aul t Header Channel Regi st ry with the default expiry (60 seconds).
Channels are removed from the registry after this time. To change this, simply define a bean with
id i nt egrati onHeader Channel Regi stry and configure the required delay using a constructor
argument (milliseconds).

The Header Channel Regi stry has a si ze() method to determine the current size of the registry.
The runReaper () method cancels the current scheduled task and runs the reaper immediately; the
task is then scheduled to run again based on the current delay. These methods can be invoked directly
by getting a reference to the registry, or you can send a message with, for example, the following content
to a control bus:

" @ nt egr at i onHeader Channel Regi stry. runReaper ()"

Spring Integration
3.0.1.RELEASE Reference Manual 83

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html

Spring Integration

This sub-element is a convenience only, and is the equivalent of specifying:

<int:reply-channel

expressi on="@ nt egr ati onHeader Channel Regi st ry. channel ToChannel Nane(headers. r epl yChannel)"/
>
<int:error-channel

expressi on=" @ nt egr at i onHeader Channel Regi st ry. channel ToChannel Nane(headers. err or Channel)"/
>

Q@ Tip
For more examples for configuring header enrichers, see _Header Enricher Advanced
Configuration.

Payload Enricher

In certain situations the Header Enricher, as discussed above, may not be sufficient and payloads
themselves may have to be enriched with additional information. For example, order messages that
enter the Spring Integration messaging system have to look up the order's customer based on the
provided customer number and then enrich the original payload with that information.

Since Spring Integration 2.1, the Payload Enricher is provided. A Payload Enricher defines an endpoint
that passes a Message to the exposed request channel and then expects a reply message. The reply
message then becomes the root object for evaluation of expressions to enrich the target payload.

The Payload Enricher provides full XML namespace support via the enri cher element. In order to
send request messages, the payload enricher has a r equest - channel attribute that allows you to
dispatch messages to a request channel.

Basically by defining the request channel, the Payload Enricher acts as a Gateway, waiting for the
message that were sent to the request channel to return, and the Enricher then augments the message's
payload with the data provided by the reply message.

When sending messages to the request channel you also have the option to only send a subset of the
original payload using the r equest - payl oad- expr essi on attribute.

The enriching of payloads is configured through SpEL expressions, providing users with a maximum
degree of flexibility. Therefore, users are not only able to enrich payloads with direct values from the
reply channel's Message, but they can use SpEL expressions to extract a subset from that Message,
only, or to apply addtional inline transformations, allowing them to further manipulate the data.

If you only need to enrich payloads with static values, you don't have to provide the r equest - channel
attribute.

© Note

Enrichers are a variant of Transformers and in many cases you could use a Payload Enricher
or a generic Transformer implementation to add additional data to your messages payloads.
Thus, familiarize yourself with all transformation-capable components that are provided by Spring
Integration and carefully select the implementation that semantically fits your business case best.

Configuration

Below, please find an overview of all available configuration options that are available for the payload
enricher:

Spring Integration
3.0.1.RELEASE Reference Manual 84

https://github.com/SpringSource/spring-integration/wiki/Header-Enricher-Advanced-Configuration
https://github.com/SpringSource/spring-integration/wiki/Header-Enricher-Advanced-Configuration

Spring Integration

<int:enricher request-channel =
aut o-startup="true"
id=""
order=""

out put - channel =

request - payl oad- expr essi on=""

repl y- channel =

send-ti meout =
shoul d- cl one- payl oad="f al se">

OO0 ooooooOoogoao

<int:poller></int:poller>
<int:property name="" expression=""/>

<int:property name="" val ue=""/>
<i nt: header name="" expression=""/>
<i nt:header name="" val ue="" overwite="" type=""/>

</int:enricher>

O Channel to which a Message will be sent to get the data to use for enrichment. Optional.

O Lifecycle attribute signaling if this component should be started during Application Context startup.
Defaults to true. Optional.

0 Id of the underlying bean definition, which is either an Event Dri venConsuner or a
Pol I i ngConsuner . Optional.

0 Specifies the order for invocation when this endpoint is connected as a subscriber to a channel.
This is particularly relevant when that channel is using a "failover" dispatching strategy. It has no
effect when this endpoint itself is a Polling Consumer for a channel with a queue. Optional.

0 Identifies the Message channel where a Message will be sent after it is being processed by this
endpoint. Optional.

0 Bydefaultthe original message's payload will be used as payload that will be send to the r equest -
channel . By specifying a SpEL expression as value for the r equest - payl oad- expr essi on
attribute, a subset of the original payload, a header value or any other resolvable SpEL expression
can be used as the basis for the payload, that will be sent to the request-channel.

For the Expression evaluation the full message is available as the 'root object'.
For instance the following SpEL expressions (among others) are possible:

* payload.foo

* headers.foobar

e new java.util.Date()

 'foo' + 'bar'

If more sophisticated logic is required (e.g. changing the message headers etc.) please use
additional downstream transformers. Optional.

O Channel where a reply Message is expected. This is optional; typically the auto-generated
temporary reply channel is sufficient. Optional.

0 Maximum amount of time in milliseconds to wait when sending a message to the channel, if such
channel may block.

For example, a Queue Channel can block until space is available, if its maximum capacity has been
reached. Internally the send timeout is set on the Messagi ngTenpl at e and ultimately applied
when invoking the send operation on the MessageChannel .

Spring Integration
3.0.1.RELEASE Reference Manual 85

Spring Integration

By default the send timeout is set to '-1', which may cause the send operation on the
MessageChannel , depending on the implementation, to block indefinitely. Optional.

0 Boolean value indicating whether any payload that implements C oneabl e should be cloned prior
to sending the Message to the request chanenl for acquiring the enriching data. The cloned version
would be used as the target payload for the ultimate reply. Default is f al se. Optional.

O Allows you to configure a Message Poller if this endpoint is a Polling Consumer. Optional.

Each pr opert y sub-element provides the name of a property (via the mandatory name attribute).
That property should be settable on the target payload instance. Exactly one of the val ue or
expr essi on attributes must be provided as well. The former for a literal value to set, and the latter
for a SpEL expression to be evaluated. The root object of the evaluation context is the Message
that was returned from the flow initiated by this enricher, the input Message if there is no request
channel, or the application context (using the '@<beanName>.<beanProperty>' SpEL syntax).

Each header sub-element provides the name of a Message header (via the mandatory nane
attribute). Exactly one of the val ue or expr essi on attributes must be provided as well. The
former for a literal value to set, and the latter for a SpEL expression to be evaluated. The root
object of the evaluation context is the Message that was returned from the flow initiated by this
enricher, the input Message if there is no request channel, or the application context (using the
‘@<beanName>.<beanProperty>' SpEL syntax). Note, similar to the <header - enri cher >, the
<enri cher >'s header element has t ype and overwr it e attributes. However, a difference is
that, with the <enri cher >, the overwri t e attribute is t r ue by default, to be consistent with
<enri cher >'s <pr opert y> sub-element.

Examples
Below, please find several examples of using a Payload Enricher in various situations.

In the following example, a User object is passed as the payload of the Message. The User has several
properties but only the user name is set initially. The Enricher's r equest - channel attribute below is
configured to pass the User on to the f i ndUser Ser vi ceChannel .

Through the implicitly set r epl y- channel a User object is returned and using the pr operty sub-
element, properties from the reply are extracted and used to enrich the original payload.

<int:enricher id="findUserEnricher"
i nput - channel ="fi ndUser Enri cher Channel "
request - channel ="fi ndUser Ser vi ceChannel ">
<int:property name="emil" expressi on="payl oad. enwni | "/ >
<int:property name="password" expression="payl oad. password"/ >
</int:enricher>

© Note

The code samples shown here, are part of the Spring Integration Samples project. Please feel
free to check it out at: https://github.com/SpringSource/spring-integration-samples

How do | pass only a subset of data to the request channel?

Using ar equest - payl oad- expr essi on attribute a single property of the payload can be passed on
to the request channel instead of the full message. In the example below on the username property is
passed on to the request channel. Keep in mind, that alwhough only the username is passed on, the
resulting message send to the request channel will contain the full set of MessageHeader s.

Spring Integration
3.0.1.RELEASE Reference Manual 86

https://github.com/SpringSource/spring-integration-samples

Spring Integration

<int:enricher id="findUserByUsernanmeEnri cher"
i nput - channel ="fi ndUser ByUser naneEnr i cher Channel "
request - channel ="fi ndUser ByUser naneSer vi ceChannel "
request - payl oad- expr essi on="payl oad. user nane" >
<int:property nane="enail" expressi on="payl oad. emai | "/ >
<int:property nane="password" expression="payl oad. password"/>
</int:enricher>

How can | enrich payloads that consist of Collection data?

In the following example, instead of a User object, a Map is passed in. The Map contains the username
under the map key user nane. Only the user nane is passed on to the request channel. The reply
contains a full User object, which is ultimately added to the Map under the user key.

<int:enricher id="findUser WthMapEnricher"
i nput - channel ="fi ndUser Wt hMapEnri cher Channel "
request - channel ="f i ndUser ByUser nanmeSer vi ceChannel "
request - payl oad- expr essi on="payl oad. user nane" >
<int:property nane="user" expr essi on="payl oad"/ >
</int:enricher>

How can | enrich payloads with static information without using a request channel?

Here is an example that does not use a request channel at all, but solely enriches the message's payload
with static values. But please be aware that the word 'static' is used loosly here. You can still use SpEL
expressions for setting those values.

<int:enricher id="userEnricher"
i nput - channel ="i nput" >
<int:property nanme="user.updat eDate" expression="new java.util.Date()"/>
<int:property name="user.firstNane" val ue="foo"/>
<int:property name="user.| ast Nane" val ue="bar"/>
<int:property nane="user.age" val ue="42"/>
</int:enricher>

6.3 Claim Check

Introduction

In the earlier sections we've covered several Content Enricher type components that help you deal with
situations where a message is missing a piece of data. We also discussed Content Filtering which lets
you remove data items from a message. However there are times when we want to hide data temporarily.
For example, in a distributed system we may receive a Message with a very large payload. Some
intermittent message processing steps may not need access to this payload and some may only need
to access certain headers, so carrying the large Message payload through each processing step may
cause performance degradation, may produce a security risk, and may make debugging more difficult.

The Claim Check pattern describes a mechanism that allows you to store data in a well known place
while only maintaining a pointer (Claim Check) to where that data is located. You can pass that pointer
around as a payload of a new Message thereby allowing any component within the message flow to get
the actual data as soon as it needs it. This approach is very similar to the Certified Mail process where
you'll get a Claim Check in your mailbox and would have to go to the Post Office to claim your actual
package. Of course it's also the same idea as baggage-claim on a flight or in a hotel.

Spring Integration provides two types of Claim Check transformers:

Spring Integration
3.0.1.RELEASE Reference Manual 87

http://www.eaipatterns.com/StoreInLibrary.html

Spring Integration

 Incoming Claim Check Transformer

» Outgoing Claim Check Transformer

Convenient namespace-based mechanisms are available to configure them.
Incoming Claim Check Transformer

An Incoming Claim Check Transformer will transform an incoming Message by storing it in the Message
Store identified by its message- st or e attribute.

<int:clai mcheck-in id="checkin"
i nput - channel =" checki nChannel "
nmessage- st ore="t est MessageSt or e"
out put - channel =" out put "/ >

In the above configuration the Message that is received on the i nput - channel will be persisted to
the Message Store identified with the nessage- st or e attribute and indexed with generated ID. That
ID is the Claim Check for that Message. The Claim Check will also become the payload of the new
(transformed) Message that will be sent to the out put - channel .

Now, lets assume that at some point you do need access to the actual Message. You can of course
access the Message Store manually and get the contents of the Message, or you can use the same
approach as before except now you will be transforming the Claim Check to the actual Message by
using an Outgoing Claim Check Transformer.

Here is an overview of all available parameters of an Incoming Claim Check Transformer:

<int:claimcheck-in auto-startup="true" O
id=""
i nput - channel =""

nmessage- st or e="nessageSt ore"

OO0Oo0o0OooOooao

<int:poller></int:poller>
</int:clai mcheck-in>

O Lifecycle attribute signaling if this component should be started during Application Context startup.
Defaults to true. Attribute is not available inside a Chai n element. Optional.

0 Id identifying the underlying bean definition (MessageTr ansf or mi ngHandl er). Attribute is not
available inside a Chai n element. Optional.

O Thereceiving Message channel of this endpoint. Attribute is not available inside a Chai n element.
Optional.

0 Reference to the MessageStore to be used by this Claim Check transformer. If not specified, the
default reference will be to a bean named messageStore. Optional.

0 Specifies the order for invocation when this endpoint is connected as a subscriber to a channel.
This is particularly relevant when that channel is using a failover dispatching strategy. It has no
effect when this endpoint itself is a Polling Consumer for a channel with a queue. Attribute is not
available inside a Chai n element. Optional.

O Identifies the Message channel where Message will be sent after its being processed by this
endpoint. Attribute is not available inside a Chai n element. Optional.

Spring Integration
3.0.1.RELEASE Reference Manual 88

Spring Integration

O Specify the maximum amount of time in milliseconds to wait when sending a reply Message to the
output channel. By default the send will block for one second. Attribute is not available inside a
Chai n element. Optional.

O Defines a poller. Element is not available inside a Chai n element. Optional.

Outgoing Claim Check Transformer

An Outgoing Claim Check Transformer allows you to transform a Message with a Claim Check payload
into a Message with the original content as its payload.

<int:clai mcheck-out id="checkout"
i nput - channel =" checkout Channel "
nmessage- st ore="t est MessageSt ore"
out put - channel =" out put "/ >

In the above configuration, the Message that is received on the i nput - channel should have a Claim
Check as its payload and the Outgoing Claim Check Transformer will transform it into a Message with
the original payload by simply querying the Message store for a Message identified by the provided
Claim Check. It then sends the newly checked-out Message to the out put - channel .

Here is an overview of all available parameters of an Outgoing Claim Check Transformer:

<int:clai mcheck-out auto-startup="true" 0O
id=""
i nput - channel =""
message- st or e="nessageSt or e"
order=""
out put - channel =""
renove- message="f al se"
send-ti meout ="">

OoO0Oo0ooOooooQg

<int:poller></int:poller>
</int:clai mcheck-out>

O Lifecycle attribute signaling if this component should be started during Application Context startup.
Defaults to true. Attribute is not available inside a Chai n element. Optional.

O Id identifying the underlying bean definition (MessageTr ansf or m ngHandl er). Attribute is not
available inside a Chai n element. Optional.

0 The receiving Message channel of this endpoint. Attribute is not available inside a Chai n element.
Optional.

0 Reference to the MessageStore to be used by this Claim Check transformer. If not specified, the
default reference will be to a bean named messageStore. Optional.

0 Specifies the order for invocation when this endpoint is connected as a subscriber to a channel.
This is particularly relevant when that channel is using a failover dispatching strategy. It has no
effect when this endpoint itself is a Polling Consumer for a channel with a queue. Attribute is not
available inside a Chai n element. Optional.

O Identifies the Message channel where Message will be sent after its being processed by this
endpoint. Attribute is not available inside a Chai n element. Optional.

O If setto true the Message will be removed from the MessageStore by this transformer. Useful
when Message can be "claimed" only once. Defaults to f al se. Optional.

O Specify the maximum amount of time in milliseconds to wait when sending a reply Message to the
output channel. By default the send will block for one second. Attribute is not available inside a
Chai n element. Optional.

0 Defines a poller. Element is not available inside a Chai n element. Optional.

Spring Integration
3.0.1.RELEASE Reference Manual 89

Spring Integration

Claim Once

There are scenarios when a particular message must be claimed only once. As an analogy, consider the
airplane luggage check-in/out process. Checking-in your luggage on departure and and then claiming
it on arrival is a classic example of such a scenario. Once the luggage has been claimed, it can not be
claimed again without first checking it back in. To accommodate such cases, we introduced ar enove-
nmessage boolean attribute on the cl ai m check- out transformer. This attribute is set to f al se by
default. However, if setto t r ue, the claimed Message will be removed from the MessageStore, so that
it can no longer be claimed again.

This is also something to consider in terms of storage space, especially in the case of the in-memory
Map-based Si npl eMessagesSt or e, where failing to remove the Messages could ultimately lead to an
Qut O Menor yExcept i on. Therefore, if you don't expect multiple claims to be made, it's recommended
that you set the r enbve- nessage attribute's value to t r ue.

<int:clai mcheck-out id="checkout"
i nput - channel =" checkout Channel "
nmessage- st ore="t est MessageSt or e"
out put - channel =" out put "
renove- nessage="true"/ >

A word on Message Store

Although we rarely care about the details of the claim checks as long as they work, it is still worth
knowing that the current implementation of the actual Claim Check (the pointer) in Spring Integration
is a UUID to ensure uniqueness.

org. springframework.integration.store. MessageStore is a strategy interface for storing
and retrieving messages. Spring Integration provides two convenient implementations of it.
Si npl eMessageSt or e: an in-memory, Map-based implementation (the default, good for testing) and
JdbcMessagesSt or e: an implementation that uses a relational database via JDBC.

Spring Integration
3.0.1.RELEASE Reference Manual 90

Spring Integration

7. Messaging Endpoints

7.1 Message Endpoints

The first part of this chapter covers some background theory and reveals quite a bit about the underlying
API that drives Spring Integration's various messaging components. This information can be helpful if
you want to really understand what's going on behind the scenes. However, if you want to get up and
running with the simplified namespace-based configuration of the various elements, feel free to skip
ahead to the section called “Namespace Support” for now.

As mentioned in the overview, Message Endpoints are responsible for connecting the various
messaging components to channels. Over the next several chapters, you will see a number of different
components that consume Messages. Some of these are also capable of sending reply Messages.
Sending Messages is quite straightforward. As shown above in Section 3.1, “Message Channels”, it's
easy to send a Message to a Message Channel. However, receiving is a bit more complicated. The main
reason is that there are two types of consumers: Polling Consumers and Event Driven Consumers.

Of the two, Event Driven Consumers are much simpler. Without any need to manage and schedule a
separate poller thread, they are essentially just listeners with a callback method. When connecting to one
of Spring Integration's subscribable Message Channels, this simple option works great. However, when
connecting to a buffering, pollable Message Channel, some component has to schedule and manage the
polling thread(s). Spring Integration provides two different endpoint implementations to accommodate
these two types of consumers. Therefore, the consumers themselves can simply implement the callback
interface. When polling is required, the endpoint acts as a container for the consumer instance. The
benefit is similar to that of using a container for hosting Message Driven Beans, but since these
consumers are simply Spring-managed Objects running within an ApplicationContext, it more closely
resembles Spring's own MessageListener containers.

Message Handler

Spring Integration's MessageHandl er interface is implemented by many of the components within
the framework. In other words, this is not part of the public API, and a developer would not typically
implement MessageHandI er directly. Nevertheless, it is used by a Message Consumer for actually
handling the consumed Messages, and so being aware of this strategy interface does help in terms of
understanding the overall role of a consumer. The interface is defined as follows:

public interface MessageHandl er {

voi d handl eMessage(Message<?> nessage) ;

}

Despite its simplicity, this provides the foundation for most of the components that will be covered
in the following chapters (Routers, Transformers, Splitters, Aggregators, Service Activators, etc).
Those components each perform very different functionality with the Messages they handle, but the
requirements for actually receiving a Message are the same, and the choice between polling and event-
driven behavior is also the same. Spring Integration provides two endpoint implementations that host
these callback-based handlers and allow them to be connected to Message Channels.

Event Driven Consumer

Because it is the simpler of the two, we will cover the Event Driven Consumer endpoint first.
You may recall that the Subscri babl eChannel interface provides a subscri be() method

Spring Integration
3.0.1.RELEASE Reference Manual 91

http://www.eaipatterns.com/PollingConsumer.html
http://www.eaipatterns.com/EventDrivenConsumer.html

Spring Integration

and that the method accepts a MessageHandl er parameter (as shown in the section called
“SubscribableChannel”):

subscri babl eChannel . subscri be(messageHandl er) ;

Since a handler that is subscribed to a channel does not have to actively poll that channel, this
is an Event Driven Consumer, and the implementation provided by Spring Integration accepts a a
Subscri babl eChannel and a MessageHand| er:

Subscri babl eChannel channel = context.getBean("subscri babl eChannel ",
Subscri babl eChannel . cl ass) ;

Event Dri venConsuner consuner = new Event Dri venConsuner (channel , exanpl eHandl er);

Polling Consumer

Spring Integration also provides a Pol | i ngConsuner, and it can be instantiated in the same way
except that the channel must implement Pol | abl eChannel :

Pol | abl eChannel channel = context. getBean("pol | abl eChannel ", Pol | abl eChannel . cl ass);

Pol | i ngConsuner consunmer = new Pol | i ngConsuner (channel , exanpl eHandl er) ;

© Note

For more information regarding Polling Consumers, please also read Section 3.2, “Poller (Polling
Consumer)” as well as Section 3.3, “Channel Adapter”.

There are many other configuration options for the Polling Consumer. For example, the trigger is a
required property:

Pol | i ngConsuner consunmer = new Pol | i ngConsuner (channel , handl er);

consuner . set Tri gger (new | nterval Tri gger (30, Ti meUnit.SECONDS));

Spring Integration currently provides two implementations of the Trigger interface:
Interval Tri gger and CronTri gger. The | nterval Tri gger is typically defined with a simple
interval (in milliseconds), but also supports an initialDelay property and a boolean fixedRate property
(the default is false, i.e. fixed delay):

Interval Trigger trigger = new Interval Tri gger (1000);
trigger.setlnitial Del ay(5000);
trigger.setFixedRate(true);

The CronTri gger simply requires a valid cron expression (see the Javadoc for details):

CronTrigger trigger = new CronTrigger("*/10 * * * * MON-FRI");

In addition to the trigger, several other polling-related configuration properties may be specified:

Pol | i ngConsuner consuner = new Pol | i ngConsuner (channel , handl er);

consuner . set MaxMessagesPer Pol | (10) ;
consuner . set Recei veTi neout (5000) ;

Spring Integration
3.0.1.RELEASE Reference Manual 92

Spring Integration

The maxMessagesPerPoll property specifies the maximum number of messages to receive within a
given poll operation. This means that the poller will continue calling receive() without waiting until either
nul | is returned or that max is reached. For example, if a poller has a 10 second interval trigger and
a maxMessagesPerPoll setting of 25, and it is polling a channel that has 100 messages in its queue,
all 100 messages can be retrieved within 40 seconds. It grabs 25, waits 10 seconds, grabs the next
25, and so on.

The receiveTimeout property specifies the amount of time the poller should wait if no messages are
available when it invokes the receive operation. For example, consider two options that seem similar on
the surface but are actually quite different: the first has an interval trigger of 5 seconds and a receive
timeout of 50 milliseconds while the second has an interval trigger of 50 milliseconds and a receive
timeout of 5 seconds. The first one may receive a message up to 4950 milliseconds later than it arrived
on the channel (if that message arrived immediately after one of its poll calls returned). On the other
hand, the second configuration will never miss a message by more than 50 milliseconds. The difference
is that the second option requires a thread to wait, but as a result it is able to respond much more
quickly to arriving messages. This technique, known as long polling, can be used to emulate event-
driven behavior on a polled source.

A Polling Consumer may also delegate to a Spring TaskExecut or, as illustrated in the following
example:

Pol | i ngConsuner consunmer = new Pol | i ngConsuner (channel , handl er);

TaskExecut or taskExecutor = context.getBean("exanpl eExecutor", TaskExecutor. cl ass);
consuner . set TaskExecut or (t askExecut or) ;

Furthermore, a Pol | i ngConsumner has a property called adviceChain. This property allows you to
specify a Li st of AOP Advices for handling additional cross cutting concerns including transactions.
These advices are applied around the doPol | () method. For more in-depth information, please see the
sections AOP Advice chains and Transaction Support under the section called “Namespace Support”.

The examples above show dependency lookups, but keep in mind that these consumers will most often
be configured as Spring bean definitions. In fact, Spring Integration also provides a Fact or yBean called
Consuner Endpoi nt Fact or yBean that creates the appropriate consumer type based on the type of
channel, and there is full XML namespace support to even further hide those details. The namespace-
based configuration will be featured as each component type is introduced.

© Note

Many of the MessageHand!| er implementations are also capable of generating reply Messages.
As mentioned above, sending Messages is trivial when compared to the Message reception.
Nevertheless, when and how many reply Messages are sent depends on the handler type. For
example, an Aggregator waits for a number of Messages to arrive and is often configured as
a downstream consumer for a Splitter which may generate multiple replies for each Message
it handles. When using the namespace configuration, you do not strictly need to know all
of the details, but it still might be worth knowing that several of these components share a
common base class, the Abst ract Repl yPr oduci ngMessageHandl er, and it provides a
set Qut put Channel (..) method.

Namespace Support

Throughout the reference manual, you will see specific configuration examples for endpoint elements,
such as router, transformer, service-activator, and so on. Most of these will support an input-channel

Spring Integration
3.0.1.RELEASE Reference Manual 93

Spring Integration

attribute and many will support an output-channel attribute. After being parsed, these endpoint elements
produce an instance of either the Pol | i ngConsuner or the Event Dri venConsumer depending
on the type of the input-channel that is referenced: Pol | abl eChannel or Subscri babl eChannel
respectively. When the channel is pollable, then the polling behavior is determined based on the
endpoint element's poller sub-element and its attributes.

Configuration

Below you find a poller with all available configuration options:

<int:poller cron=""
def aul t ="f al se"
error-channel =""
fixed-del ay=""
fixed-rate=""
id=""
max- nessages- per - pol | =""
recei ve-tineout =""
ref=""

t ask- execut or=""

time-unit="M LLI SECONDS"

<int:advice-chain />

<int:transactional />
</int:poller>

EEEEDDDDDDDDDD

O Provides the ability to configure Pollers using Cron expressions. The underlying implementation
uses aorg. spri ngframewor k. schedul i ng. support. CronTri gger. If this attribute is set,
none of the following attributes must be specified: fi xed-del ay,tri gger,fi xed-rate, ref.

O By setting this attribute to true, it is possible to define exactly one (1) global default
poller. An exception is raised if more than one default poller is defined in the
application context. Any endpoints connected to a PollableChannel (PollingConsumer) or any
SourcePollingChannelAdapter that does not have any explicitly configured poller will then use the
global default Poller. Optional. Defaults to f al se.

O Identifies the channel which error messages will be sent to if a failure occurs in this poller's
invocation. To completely suppress Exceptions, provide a reference to the nul | Channel .
Optional.

0 The fixed delay trigger uses a Peri odi cTri gger under the covers. If the ti me-uni t attribute
is not used, the specified value is represented in milliseconds. If this attribute is set, none of the
following attributes must be specified: f i xed-rate, trigger,cron,ref.

O The fixed rate trigger uses a Peri odi cTri gger under the covers. If the ti ne-unit attribute
is not used the specified value is represented in milliseconds. If this attribute is set, none of the
following attributes must be specified: f i xed- del ay, tri gger, cron,ref.

O The |Id referring to the Poller's underlying bean-definition, which is of type
org. springframework. i ntegration. scheduling. Pol | er Met adat a. The id attribute is
required for a top-level poller element unless it is the default poller (def aul t ="t rue").

0 Please see the section called “Configuring An Inbound Channel Adapter” for more information.
Optional. If not specified the default values used depends on the context. If a Pol | i ngConsurner
is used, this atribute will default to -1. However, if a Sour cePol | i ngChannel Adapt er is used,
then the max- nessages- per - pol | attribute defaults to 1.

O Valueis seton the underlying class Pol | er Met adat a Optional. If not specified it defaults to 1000
(milliseconds).

Spring Integration
3.0.1.RELEASE Reference Manual 94

Spring Integration

0 Bean reference to another top-level poller. The r ef attribute must not be present on the top-level
pol | er element. However, if this attribute is set, none of the following attributes must be specified:
fixed-rate,trigger,cron,fixed-del eay.

O Provides the ability to reference a custom task executor. Please see the section below titled
TaskExecutor Support for further information. Optional.

This attribute specifies the java.util.concurrent. TineUnit enum value on the
underlying or g. spri ngf ranmewor k. schedul i ng. support. Peri odi cTri gger. Therefore,
this attribute can ONLY be used in combination with the f i xed- del ay orfi xed- r at e attributes.
If combined with either cron oratri gger reference attribute, it will cause a failure.

The minimal supported granularity for a Peri odi cTri gger is MILLISECONDS. Therefore, the
only available options are MILLISECONDS and SECONDS. If this value is not provided, then any
fi xed- del ay or fi xed- r at e value will be interpreted as MILLISECONDS by default.

Basically this enum provides a convenience for SECONDS-based interval trigger values. For
hourly, daily, and monthly settings, consider using a cr on trigger instead.

Reference to any spring configured bean which implements the
org. spri ngfranmewor k. schedul i ng. Tri gger interface. Optional. However, if this attribute
is set, none of the following attributes must be specified: f i xed- del ay, fi xed-rat e,cron,ref.

Allows to specify extra AOP Advices to handle additional cross cutting concerns. Please see the
section below titled Transaction Support for further information. Optional.

Pollers can be made transactional. Please see the section below titled AOP Advice chains for
further information. Optional.

Examples

For example, a simple interval-based poller with a 1-second interval would be configured like this:

<int:transfornmer input-channel ="poll abl e"
ref ="transfornmer"
out put - channel =" out put " >
<int:poller fixed-rate="1000"/>
</int:transforner>

As an alternative to fixed-rate you can also use the fixed-delay attribute.

For a poller based on a Cron expression, use the cron attribute instead:

<int:transfornmer input-channel="poll abl e"
ref="transforner"
out put - channel =" out put " >
<int:poller cron="*/10 * * * * MON-FRI"/>
</int:transforner>

If the input channel is a Pol | abl eChannel , then the poller configuration is required. Specifically, as
mentioned above, the trigger is a required property of the PollingConsumer class. Therefore, if you omit
the poller sub-element for a Polling Consumer endpoint's configuration, an Exception may be thrown.
The exception will also be thrown if you attempt to configure a poller on the element that is connected
to a non-pollable channel.

It is also possible to create top-level pollers in which case only a ref is required:

Spring Integration
3.0.1.RELEASE Reference Manual 95

Spring Integration

<int:poller id="weekdayPoller" cron="*/10 * * * * MON-FRI"/>

<int:transforner input-channel="poll abl e"
ref ="transfornmer"
out put - channel =" out put " >
<int:poller ref="weekdayPoller"/>
</int:transfornmer>

@ Note

The ref attribute is only allowed on the inner-poller definitions. Defining this attribute on a top-
level poller will result in a configuration exception thrown during initialization of the Application
Context.

Global Default Pollers

In fact, to simplify the configuration even further, you can define a global default poller. A single top-level
poller within an ApplicationContext may have the def aul t attribute with a value of true. In that case, any
endpoint with a PollableChannel for its input-channel that is defined within the same ApplicationContext
and has no explicitly configured poller sub-element will use that default.

<int:poller id="defaultPoller" default="true" max-nessages-per-poll="5" fixed-rate="3000"/
>

<I-- No <poller/> sub-elenment is necessary since there is a default -->
<int:transforner input-channel="poll abl e"

ref ="transfornmer"

out put - channel =" out put "/ >

Transaction Support

Spring Integration also provides transaction support for the pollers so that each receive-and-forward
operation can be performed as an atomic unit-of-work. To configure transactions for a poller, simply add
the <transactional/> sub-element. The attributes for this element should be familiar to anyone who has
experience with Spring's Transaction management:

<int:poller fixed-delay="1000">
<int:transactional transaction-nmanager="txManager"
pr opagat i on=" REQUI RED"
i sol at i on=" REPEATABLE_READ"
ti meout ="10000"
read-onl y="fal se"/ >

</int:poller>

For more information please refer to the section called “Poller Transaction Support”.
AOP Advice chains

Since Spring transaction support depends on the Proxy mechanism with Tr ansact i onl nt er cept or
(AOP Advice) handling transactional behavior of the message flow initiated by the poller, some times
there is a need to provide extra Advice(s) to handle other cross cutting behavior associated with the
poller. For that poller defines an advice-chain element allowing you to add more advices - class that
implements Met hodl nt er cept or interface..

Spring Integration
3.0.1.RELEASE Reference Manual 96

Spring Integration

<int:service-activator id="advicedSa" input-channel ="goodl nput Wt hAdvi ce" ref="testBean"
met hod="good" out put - channel =" out put " >
<int:poller max-nessages-per-poll="1" fixed-rate="10000">
<int:transactional transaction-nmanager="txManager" />
<i nt:advi ce-chai n>
<ref bean="advi ceA" />
<beans: bean cl ass="org. bar. Sanpl eAdvi ce"/ >
</int:advi ce-chai n>
</int:poller>
</int:service-activator>

For more information on how to implement MethodInterceptor please refer to AOP sections of Spring
reference manual (section 8 and 9). Advice chain can also be applied on the poller that does not have
any transaction configuration essentially allowing you to enhance the behavior of the message flow
initiated by the poller.

TaskExecutor Support

The polling threads may be executed by any instance of Spring's TaskExecut or abstraction. This
enables concurrency for an endpoint or group of endpoints. As of Spring 3.0, there is a task namespace
in the core Spring Framework, and its <executor/> element supports the creation of a simple thread
pool executor. That element accepts attributes for common concurrency settings such as pool-size and
gueue-capacity. Configuring a thread-pooling executor can make a substantial difference in how the
endpoint performs under load. These settings are available per-endpoint since the performance of an
endpoint is one of the major factors to consider (the other major factor being the expected volume
on the channel to which the endpoint subscribes). To enable concurrency for a polling endpoint that
is configured with the XML namespace support, provide the task-executor reference on its <poller/>
element and then provide one or more of the properties shown below:

<int:poller task-executor="pool" fixed-rate="1000"/>

<t ask: execut or i d="pool"
pool - si ze="5- 25"
queue- capaci t y="20"
keep-al i ve="120"/>

If no task-executor is provided, the consumer's handler will be invoked in the caller's thread. Note that
the caller is usually the default TaskSchedul er (see Section F.3, “Configuring the Task Scheduler”).
Also, keep in mind that the task-executor attribute can provide a reference to any implementation of
Spring's TaskExecut or interface by specifying the bean name. The executor element above is simply
provided for convenience.

As mentioned in the background section for Polling Consumers above, you can also configure a Polling
Consumer in such a way as to emulate event-driven behavior. With a long receive-timeout and a short
interval-trigger, you can ensure a very timely reaction to arriving messages even on a polled message
source. Note that this will only apply to sources that have a blocking wait call with a timeout. For example,
the File poller does not block, each receive() call returns immediately and either contains new files or
not. Therefore, even if a poller contains a long receive-timeout, that value would never be usable in such
a scenario. On the other hand when using Spring Integration's own queue-based channels, the timeout
value does have a chance to participate. The following example demonstrates how a Polling Consumer
will receive Messages nearly instantaneously.

Spring Integration
3.0.1.RELEASE Reference Manual 97

Spring Integration

<int:service-activator input-channel="someQueueChannel "
out put - channel =" out put " >
<int:poller receive-tineout="30000" fixed-rate="10"/>

</int:service-activator>

Using this approach does not carry much overhead since internally it is nothing more then a timed-wait
thread which does not require nearly as much CPU resource usage as a thrashing, infinite while loop
for example.

Change Polling Rate at Runtime

When configuring Pollers with a f i xed- del ay or fi xed- r at e attribute, the default implementation
willuse a Peri odi cTri gger instance. The Peri odi cTri gger is part of the Core Spring Framework
and it accepts the interval as a constructor argument, only. Therefore it cannot be changed at runtime.

However, you can define your own implementation of the
or g. spri ngframewor k. schedul i ng. Tri gger interface. You could even use the PeriodicTrigger
as a starting point. Then, you can add a setter for the interval (period), or you could even embed your
own throttling logic within the trigger itself if desired. The period property will be used with each call to
nextExecutionTime to schedule the next poll. To use this custom trigger within pollers, declare the bean
defintion of the custom Trigger in your application context and inject the dependency into your Poller
configuration using the t r i gger attribute, which references the custom Trigger bean instance. You can
now obtain a reference to the Trigger bean and the polling interval can be changed between polls.

For an example, please see the Spring Integration Samples project. It contains a sample called dynamic-
poller, which uses a custom Trigger and demonstrates the ability to change the polling interval at runtime.

» https://github.com/SpringSource/spring-integration-samples/tree/master/intermediate

The sample provides a custom Trigger which implements the org.springframework.scheduling.Trigger
interface. The sample's Trigger is based on Spring's PeriodicTrigger implementation. However, the
fields of the custom trigger are not final and the properties have explicit getters and setters, allowing to
dynamically change the polling period at runtime.

© Note

It is important to note, though, that because the Trigger method is nextExecutionTime(), any
changes to a dynamic trigger will not take effect until the next poll, based on the existing
configuration. It is not possible to force a trigger to fire before it's currently configured next
execution time.

Payload Type Conversion

Throughout the reference manual, you will also see specific configuration and implementation examples
of various endpoints which can accept a Message or any arbitrary Object as an input parameter. In the
case of an Object, such a parameter will be mapped to a Message payload or part of the payload or
header (when using the Spring Expression Language). However there are times when the type of input
parameter of the endpoint method does not match the type of the payload or its part. In this scenario
we need to perform type conversion. Spring Integration provides a convenient way for registering type
converters (using the Spring 3.x ConversionService) within its own instance of a conversion service bean
named integrationConversionService. That bean is automatically created as soon as the first converter
is defined using the Spring Integration namespace support. To register a Converter all you need is

Spring Integration
3.0.1.RELEASE Reference Manual 98

https://github.com/SpringSource/spring-integration-samples/tree/master/intermediate
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/scheduling/Trigger.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/scheduling/support/PeriodicTrigger.html

Spring Integration

to implement or g. spri ngf ramewor k. core. convert. converter. Converter and define it via
convenient namespace support:

<int:converter ref="sanpl eConverter"/>

<bean i d="sanpl eConverter" cl ass="foo. bar. Test Converter"/>

or as an inner bean:

<i nt:converter>
<bean cl ass="0.s.i.config.xmn .ConverterParserTest s$Test Converter3"/>
</int:converter>

© Important

When configuring an Application Context, the Spring Framework allows you to add a
conversionService bean (see Configuring a ConversionService chapter). This service is used,
when needed, to perform appropriate conversions during bean creation and configuration.

In contrast, the integrationConversionService is used for runtime conversions. These uses are
quite different; converters that are intended for use when wiring bean constructor-args and
properties may produce unintended results if used at runtime for Spring Integration expression
evaluation against Messages within Datatype Channels, Payload Type transformers etc.

However, if you do want to use the Spring conversionService as the Spring Integration
integrationConversionService, you can configure an alias in the Application Context:

<al i as name="conversi onServi ce" alias="integrati onConversi onService"/>

In this case the conversionService's Converters will be available for Spring Integration runtime
conversion.

Asynchronous polling

If you want the polling to be asynchronous, a Poller can optionally specify a task-executor attribute
pointing to an existing instance of any TaskExecut or bean (Spring 3.0 provides a convenient
namespace configuration via the t ask namespace). However, there are certain things you must
understand when configuring a Poller with a TaskExecutor.

The problem is that there are two configurations in place. The Poller and the TaskExecutor, and they
both have to be in tune with each other otherwise you might end up creating an artificial memory leak.

Let's look at the following configuration provided by one of the users on the Spring Integration forum
(http://forum.springsource.org/showthread.php?t=94519):

<int:service-activator input-channel ="publishChannel" ref="myService">
<int:poller receive-tineout="5000" task-executor="taskExecutor" fixed-rate="50"/>
</int:service-activator>

<t ask: execut or id="taskExecutor" pool -si ze="20" queue-capacity="20"/>

The above configuration demonstrates one of those out of tune configurations.

The poller keeps scheduling new tasks even though all the threads are blocked waiting for either a new
message to arrive, or the timeout to expire. Given that there are 20 threads executing tasks with a 5
second timeout, they will be executed at a rate of 4 per second (5000/20 = 250ms). But, new tasks are

Spring Integration
3.0.1.RELEASE Reference Manual 99

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/validation.html#core-convert-Spring-config

Spring Integration

being scheduled at a rate of 20 per second, so the internal queue in the task executor will grow at a rate
of 16 per second (while the process is idle), so we essentially have a memory leak.

One of the ways to handle this is to set the queue- capaci ty attribute of the Task Executor to O.
You can also manage it by specifying what to do with messages that can not be queued by setting the
rej ection-pol i cy attribute of the Task Executor (e.g., DISCARD). In other words there are certain
details you must understand with regard to configuring the TaskExecutor. Please refer to - Section 25 -
Task Execution and Scheduling of the Spring reference manual for more detail on the subject.

Endpoint Inner Beans

Many endpoints are composite beans; this includes all consumers and all polled inbound channel
adapters. Consumers (polled or event- driven) delegate to a MessageHandl er; polled adapters
obtain messages by delegating to a MessageSour ce. Often, it is useful to obtain a reference to the
delegate bean, perhaps to change configuration at runtime, or for testing. These beans can be obtained
from the Appl i cati onCont ext with well-known names. MessageHandl er s are registered with the
application context with a bean id soneConsuner . handl er (where 'consumer' is the endpoint's i d
attribute). MessageSour ces are registered with a bean id sonePol | edAdapt er . sour ce, again
where 'somePolledAdapter’ is the id of the adapter.

7.2 Messaging Gateways

The primary purpose of a Gateway is to hide the messaging API provided by Spring Integration. It allows
your application's business logic to be completely unaware of the Spring Integration APl and using a
generic Gateway, your code interacts instead with a simple interface, only.

Enter the GatewayProxyFactoryBean

As mentioned above, it would be great to have no dependency on the Spring Integration
APl at all - including the gateway class. For that reason, Spring Integration provides the
Gat ewayPr oxyFact or yBean that generates a proxy for any interface and internally invokes the
gateway methods shown below. Using dependency injection you can then expose the interface to your
business methods.

Here is an example of an interface that can be used to interact with Spring Integration:

package org.cafeteria;
public interface Cafe {

voi d pl aceOrder (Order order);

Gateway XML Namespace Support

Namespace support is also provided which allows you to configure such an interface as a service as
demonstrated by the following example.

<i nt: gat eway i d="cafeService"
service-interface="org.cafeteria. Cafe"
def aul t - request - channel ="r equest Channel "
def aul t -repl y- channel ="r epl yChannel "/ >

Spring Integration
3.0.1.RELEASE Reference Manual 100

Spring Integration

With this configuration defined, the "cafeService" can now be injected into other beans, and the code
that invokes the methods on that proxied instance of the Cafe interface has no awareness of the Spring
Integration API. The general approach is similar to that of Spring Remoting (RMI, Httpinvoker, etc.). See
the "Samples" Appendix for an example that uses this "gateway" element (in the Cafe demao).

Setting the Default Reply Channel

Typically you don't have to specify the def aul t - r epl y- channel , since a Gateway will auto-create
a temporary, anonymous reply channel, where it will listen for the reply. However, there are some
cases which may prompt you to define adef aul t - r epl y- channel (orr epl y- channel with adapter
gateways such as HTTP, JMS, etc.).

For some background, we'll quickly discuss some of the inner-workings of the Gateway. A Gateway
will create a temporary point-to-point reply channel which is anonymous and is added to the Message
Headers with the name repl yChannel . When providing an explicit def aul t - r epl y- channel
(repl y- channel with remote adapter gateways), you have the option to point to a publish-subscribe
channel, which is so named because you can add more than one subscriber to it. Internally Spring
Integration will create a Bridge between the temporary r epl yChannel and the explicitly defined
def aul t-repl y- channel .

So let's say you want your reply to go not only to the gateway, but also to some other consumer. In
this case you would want two things: a) a named channel you can subscribe to and b) that channel
is a publish-subscribe-channel. The default strategy used by the gateway will not satisfy those needs,
because the reply channel added to the header is anonymous and point-to-point. This means that no
other subscriber can get a handle to it and even if it could, the channel has point-to-point behavior such
that only one subscriber would get the Message. So by defining a def aul t - r epl y- channel you can
point to a channel of your choosing, which in this case would be a publ i sh- subscri be- channel .
The Gateway would create a bridge from it to the temporary, anonymous reply channel that is stored
in the header.

Another case where you might want to provide a reply channel explicitly is for monitoring or auditing via
an interceptor (e.g., wiretap). You need a named channel in order to configure a Channel Interceptor.

Gateway Configuration with Annotations and/or XML
The reason that the attributes on the 'gateway’ element are named 'default-request-channel’ and 'default-

reply-channel' is that you may also provide per-method channel references by using the @zt eway
annotation.

public interface Cafe {

@zat eway (request Channel =" or ders")
voi d pl aceOrder (Order order);

You may alternatively provide such content in met hod sub-elements if you prefer XML configuration
(see the next paragraph).

It is also possible to pass values to be interpreted as Message headers on the Message that is created
and sent to the request channel by using the @Header annotation:

Spring Integration
3.0.1.RELEASE Reference Manual 101

Spring Integration

public interface FileWiter {

@zat eway(request Channel ="fil esCut")
void wite(byte[] content, @eader(FileHeaders. FI LENAVE) String fil enane);

If you prefer the XML approach of configuring Gateway methods, you can provide method sub-elements
to the gateway configuration.

<i nt:gateway id="nyGateway" service-interface="org.foo.bar. Test Gat eway"

def aul t -request - channel ="i nput C' >
<int:defaul t-header name="cal | edMet hod" expressi on="#gat ewayMet hod. nane"/ >
<i nt:nethod nanme="echo" request-channel ="input A" reply-timeout="2" request-
ti meout ="200"/>
<i nt:nethod nanme="echoUpper Case" request-channel ="i nputB"/>

<i nt:net hod name="echoVi aDefaul t"/>
</int:gat eway>

You can also provide individual headers per method invocation via XML. This could be very useful if
the headers you want to set are static in nature and you don't want to embed them in the gateway's
method signature via @Header annotations. For example, in the Loan Broker example we want to
influence how aggregation of the Loan quotes will be done based on what type of request was initiated
(single quote or all quotes). Determining the type of the request by evaluating what gateway method
was invoked, although possible, would violate the separation of concerns paradigm (the method is a
java artifact), but expressing your intention (meta information) via Message headers is natural in a
Messaging architecture.

<i nt:gat eway id="|oanBroker Gat eway"
servi ce-interface="org. springframework.integration.| oanbroker.LoanBroker Gat enay" >
<int:nethod name="get LoanQuot e" request-channel ="| oanBr oker Pr ePr ocessi ngChannel ">
<i nt: header nanme="RESPONSE TYPE" val ue="BEST"/>
</int: net hod>
<int:nethod name="get Al | LoanQuot es" request-channel ="| oanBr oker PrePr ocessi ngChannel ">
<i nt: header nanme="RESPONSE TYPE" val ue="ALL"/>
</int: net hod>
</int:gat eway>

In the above case you can clearly see how a different value will be set for the 'RESPONSE_TYPE'
header based on the gateway's method.

Expressions and "Global" Headers

The <header/ > element supports expr essi on as an alternative to val ue. The SpEL expression is
evaluated to determine the value of the header. There is no #r oot object but the following variables
are available:

» #args - an Qbj ect [] containing the method arguments

» #gatewayMethod - the j ava. r ef | ect . Met hod object representing the method in the servi ce-
i nterface that was invoked. A header containing this variable can be used later in the flow, for
example, for routing. For example, if you wish to route on the simple method name, you might add
a header, with expression #gat ewayMet hod. nane.

Spring Integration
3.0.1.RELEASE Reference Manual 102

Spring Integration

© Note

Thej ava. refl ect. Met hod is not serializable; a header with expression #gat eway Met hod
will be lost if you later serialize the message. So, you may wish to use
#gat ewayMet hod. name or #gatewayMethod.toString() in those cases; the
toSt ri ng() method provides a String representation of the method, including parameter and
return types.

© Note

Prior to 3.0, the #net hod variable was available, representing the method name only. This is
still available, but deprecated; use #gat ewayMet hod. nane instead.

Since 3.0, <def aul t - header/ >s can be defined to add headers to all messages produced by the
gateway, regardless of the method invoked. Specific headers defined for a method take precedence
over default headers. Specific headers defined for a method here will override any @deader annotations
in the service interface. However, default headers will NOT override any @Header annotations in the
service interface.

The gateway now also supports a def aul t - payl oad- expr essi on which will be applied for all
methods (unless overridden).

Mapping Method Arguments to a Message

Using the configuration techniques in the previous section allows control of how method arguments are
mapped to message elements (payload and header(s)). When no explicit configuration is used, certain
conventions are used to perform the mapping. In some cases, these conventions cannot determine
which argument is the payload and which should be mapped to headers.

public String sendl(Qnoject foo, Map bar);

public String send2(Map foo, Map bar);

In the first case, the convention will map the first argument to the payload (as long as it is not a Map)
and the contents of the second become headers.

In the second case (or the first when the argument for parameter f 0o is a Map), the framework cannot
determine which argument should be the payload; mapping will fail. This can generally be resolved
using a pay! oad- expr essi on, a @ayl oad annotation and/or a @Header s annotation.

Alternatively, and whenever the conventions break down, you can take the entire responsibility for
mapping the method calls to messages. To do this, implement an Met hodAr gsMessageMapper and
provide it to the <gat eway/ > using the mapper attribute. The mapper maps a Met hodAr gsHol der,
which is a simple class wrapping the j ava. r ef | ect . Met hod instance and an Cbj ect[] containing
the arguments. When providing a custom mapper, the def aul t - payl oad- expr essi on attribute and
<def aul t - header / > elements are not allowed on the gateway; similarly, the payl oad- expr essi on
attribute and <header / > elements are not allowed on any <net hod/ > elements.

Invoking No-Argument Methods

When invoking methods on a Gateway interface that do not have any arguments, the default behavior
is to receive a Message from a Pol | abl eChannel .

Spring Integration
3.0.1.RELEASE Reference Manual 103

Spring Integration

At times however, you may want to trigger no-argument methods so that you can in fact interact
with other components downstream that do not require user-provided parameters, e.g. triggering no-
argument SQL calls or Stored Procedures.

In order to achieve send-and-receive semantics, you must provide a payload. In order to generate a
payload, method parameters on the interface are not necessary. You can either use the @&ayl oad
annotation or the payl oad- expr essi on attribute in XML on the net hod sub-element. Below please
find a few examples of what the payloads could be:

* aliteral string

» #method (for the method name)

* new java.util.Date()

» @someBean.someMethod()'s return value

Here is an example using the @ay| oad annotation:
public interface Cafe {

@rayl oad("new java.util.Date()")
Li st<Order> retrieveCOpenOrders();

If a method has no argument and no return value, but does contain a payload expression, it will be
treated as a send-only operation.

Error Handling

Of course, the Gateway invocation might result in errors. By default any error that has occurred
downstream will be re-thrown as a Messagi ngExcept i on (RuntimeException) upon the Gateway's
method invocation. However there are times when you may want to simply log the error rather than
propagating it, or you may want to treat an Exception as a valid reply, by mapping it to a Message that will
conform to some "error message" contract that the caller understands. To accomplish this, our Gateway
provides support for a Message Channel dedicated to the errors via the error-channel attribute. In the
example below, you can see that a 'transformer' is used to create a reply Message from the Exception.

<i nt:gateway id="sanpl eGat enay"
def aul t - request - channel =" gat ewayChannel "
servi ce-interface="foo. bar. Si npl eGat eway"
error-channel ="excepti onTransf or mat i onChannel "/ >

<int:transforner input-channel ="exceptionTransfornati onChannel "
ref ="exceptionTransformer" nethod="creat eError Response"/ >

The exceptionTransformer could be a simple POJO that knows how to create the expected error
response objects. That would then be the payload that is sent back to the caller. Obviously, you could
do many more elaborate things in such an "error flow" if necessary. It might involve routers (including
Spring Integration's ErrorMessageExceptionTypeRouter), filters, and so on. Most of the time, a simple
‘transformer’ should be sufficient, however.

Alternatively, you might want to only log the Exception (or send it somewhere asynchronously). If you
provide a one-way flow, then nothing would be sent back to the caller. In the case that you want to
completely suppress Exceptions, you can provide a reference to the global "nullChannel" (essentially

Spring Integration
3.0.1.RELEASE Reference Manual 104

Spring Integration

a /dev/null approach). Finally, as mentioned above, if no "error-channel" is defined at all, then the
Exceptions will propagate as usual.

©® Important

Exposing the messaging system via simple POJI Gateways obviously provides benefits, but
"hiding" the reality of the underlying messaging system does come at a price so there are
certain things you should consider. We want our Java method to return as quickly as possible
and not hang for an indefinite amount of time while the caller is waiting on it to return (void,
return value, or a thrown Exception). When regular methods are used as a proxies in front of
the Messaging system, we have to take into account the potentially asynchronous nature of
the underlying messaging. This means that there might be a chance that a Message that was
initiated by a Gateway could be dropped by a Filter, thus never reaching a component that is
responsible for producing a reply. Some Service Activator method might result in an Exception,
thus providing no reply (as we don't generate Null messages). So as you can see there are
multiple scenarios where a reply message might not be coming. That is perfectly natural in
messaging systems. However think about the implication on the gateway method. The Gateway's
method input arguments were incorporated into a Message and sent downstream. The reply
Message would be converted to a return value of the Gateway's method. So you might want to
ensure that for each Gateway call there will always be a reply Message. Otherwise, your Gateway
method might never return and will hang indefinitely. One of the ways of handling this situation
is via an Asynchronous Gateway (explained later in this section). Another way of handling it is to
explicitly set the reply-timeout attribute. That way, the gateway will not hang any longer than the
time specified by the reply-timeout and will return 'null’ if that timeout does elapse. Finally, you
might want to consider setting downstream flags such as 'requires-reply' on a service-activator
or 'throw-exceptions-on-rejection’ on a filter. These options will be discussed in more detail in
the final section of this chapter.

Asynchronous Gateway

As a pattern the Messaging Gateway is a very nice way to hide messaging-specific code
while still exposing the full capabilities of the messaging system. As you've seen, the
Gat ewayPr oxyFact or yBean provides a convenient way to expose a Proxy over a service-interface
thus giving you POJO-based access to a messaging system (based on objects in your own domain, or
primitives/Strings, etc). But when a gateway is exposed via simple POJO methods which return values
it does imply that for each Request message (generated when the method is invoked) there must be
a Reply message (generated when the method has returned). Since Messaging systems naturally are
asynchronous you may not always be able to guarantee the contract where "for each request there will
always be be a reply". With Spring Integration 2.0 we are introducing support for an Asynchronous
Gateway which is a convenient way to initiate flows where you may not know if a reply is expected or
how long will it take for replies to arrive.

A natural way to handle these types of scenarios in Java would be relying upon
java.util.concurrent.Future instances, and that is exactly what Spring Integration uses to support an
Asynchronous Gateway.

From the XML configuration, there is nothing different and you still define Asynchronous Gateway the
same way as a regular Gateway.

<i nt: gat eway i d="nmat hhServi ce"
servi ce-

i nterface="org.springfranework.integration.sanpl e.gateway. futures. Mat hServi ceGat eway"
def aul t -request - channel ="r equest Channel "/ >

Spring Integration
3.0.1.RELEASE Reference Manual 105

Spring Integration

However the Gateway Interface (service-interface) is a bit different.

public interface MathServiceGateway {
Fut ure<lnteger> nul tiplyByTwo(int i);

}

As you can see from the example above the return type for the gateway method is a Future.
When Gat ewayPr oxyFact or yBean sees that the return type of the gateway method is a Fut ur e,
it immediately switches to the async mode by utilizing an AsyncTaskExecut or. That is all. The call
to such a method always returns immediately with a Fut ur e instance. Then, you can interact with the
Fut ur e at your own pace to get the result, cancel, etc. And, as with any other use of Future instances,
calling get() may reveal a timeout, an execution exception, and so on.

Mat hServi ceGat eway mat hServi ce = ac. get Bean(" mat hServi ce", MathServi ceGat eway. cl ass) ;
Future<l nteger> result = mathService. nultipl yByTwo(nunber);

/'l do sonething el se here since the reply m ght take a nonent

int final Result = result.get (1000, Ti meUnit.SECONDS);

For a more detailed example, please refer to the async-gateway sample distributed within the Spring
Integration samples.

Asynchronous Gateway and AsyncTaskExecutor

By default Gat ewayPr oxyFact or yBean uses
org. spri ngframework. core. task. Si npl eAsyncTaskExecut or when submitting internal
Asyncl nvocat i onTask instances for any gateway method whose return type is Fut ure. cl ass.
However the async- execut or attribute in the <gat eway/ > element's configuration allows you to
provide a reference to any implementation of j ava. uti | . concurrent. Execut or available within
the Spring application context.

Gateway behavior when no response arrives

As it was explained earlier, the Gateway provides a convenient way of interacting with a Messaging
system via POJO method invocations, but realizing that a typical method invocation, which is generally
expected to always return (even with an Exception), might not always map one-to-one to message
exchanges (e.g., a reply message might not arrive - which is equivalent to a method not returning). It is
important to go over several scenarios especially in the Sync Gateway case and understand the default
behavior of the Gateway and how to deal with these scenarios to make the Sync Gateway behavior
more predictable regardless of the outcome of the message flow that was initialed from such Gateway.

There are certain attributes that could be configured to make Sync Gateway behavior more predictable,
but some of them might not always work as you might have expected. One of them is reply-timeout.
So, lets look at the reply-timeout attribute and see how it can/can't influence the behavior of the Sync
Gateway in various scenarios. We will look at single-threaded scenario (all components downstream are
connected via Direct Channel) and multi-threaded scenarios (e.g., somewhere downstream you may
have Pollable or Executor Channel which breaks single-thread boundary)

Long running process downstream

Sync Gateway - single-threaded. If a component downstream is still running (e.g., infinite loop or a
very slow service), then setting a reply-timeout has no effect and the Gateway method call will not
return until such downstream service exits (via return or exception). Sync Gateway - multi-threaded. If
a component downstream is still running (e.g., infinite loop or a very slow service), in a multi-threaded
message flow setting the reply-timeout will have an effect by allowing gateway method invocation to

Spring Integration
3.0.1.RELEASE Reference Manual 106

https://github.com/SpringSource/spring-integration-samples/tree/master/intermediate/async-gateway

Spring Integration

return once the timeout has been reached, since the Gat ewayPr oxyFact or yBean will simply poll on
the reply channel waiting for a message until the timeout expires. However it could result in a 'null’ return
from the Gateway method if the timeout has been reached before the actual reply was produced. It is
also important to understand that the reply message (if produced) will be sent to a reply channel after
the Gateway method invocation might have returned, so you must be aware of that and design your
flow with this in mind.

Downstream component returns 'null’

Sync Gateway - single-threaded. If a component downstream returns 'null' and no reply-timeout has
been configured, the Gateway method call will hang indefinitely unless: a) a reply-timeout has been
configured or b) the requires-reply attribute has been set on the downstream component (e.g., service-
activator) that might return 'null'. In this case, an Exception would be thrown and propagated to the
Gateway. Sync Gateway - multi-threaded. Behavior is the same as above.

Downstream component return signature is 'void' while Gateway method signature is non-void

Sync Gateway - single-threaded. If a component downstream returns 'void' and no reply-timeout has
been configured, the Gateway method call will hang indefinitely unless a reply-timeout has been
configured Sync Gateway - multi-threaded Behavior is the same as above.

Downstream component results in Runtime Exception (regardless of the method signature)

Sync Gateway - single-threaded. If a component downstream throws a Runtime Exception, such
exception will be propagated via an Error Message back to the gateway and re-thrown. Sync Gateway
- multi-threaded Behavior is the same as above.

©® Important

It is also important to understand that by default reply-timeout is unbounded* which means
that if not explicitly set there are several scenarios (described above) where your Gateway
method invocation might hang indefinitely. So, make sure you analyze your flow and if there
is even a remote possibility of one of these scenarios to occur, set the reply-timeout attribute
to a 'safe' value or, even better, set the requires-reply attribute of the downstream component
to 'true' to ensure a timely response as produced by the throwing of an Exception as soon as
that downstream component does return null internally. But also, realize that there are some
scenarios (see the very first one) where reply-timeout will not help. That means it is also important
to analyze your message flow and decide when to use a Sync Gateway vs an Async Gateway.
As you've seen the latter case is simply a matter of defining Gateway methods that return Future
instances. Then, you are guaranteed to receive that return value, and you will have more granular
control over the results of the invocation.

Also, when dealing with a Router you should remember that setting the resolution-required
attribute to 'true' will result in an Exception thrown by the router if it can not resolve a particular
channel. Likewise, when dealing with a Filter, you can set the throw-exception-on-rejection
attribute. In both of these cases, the resulting flow will behave like that containing a service-
activator with the 'requires-reply’ attribute. In other words, it will help to ensure a timely response
from the Gateway method invocation.

@ Note

* reply-timeout is unbounded for <gateway/> elements (created by the
GatewayProxyFactoryBean). Inbound gateways for external integration (ws, http, etc.) share

Spring Integration
3.0.1.RELEASE Reference Manual 107

Spring Integration

many characteristics and attributes with these gateways. However, for those inbound gateways,
the default reply-timeout is 1000 milliseconds (1 second). If a downstream async handoff is made
to another thread, you may need to increase this attribute to allow enough time for the flow to
complete before the gateway times out.

7.3 Service Activator

Introduction

The Service Activator is the endpoint type for connecting any Spring-managed Object to an input channel
so that it may play the role of a service. If the service produces output, it may also be connected to an
output channel. Alternatively, an output producing service may be located at the end of a processing
pipeline or message flow in which case, the inbound Message's "replyChannel" header can be used.
This is the default behavior if no output channel is defined, and as with most of the configuration options
you'll see here, the same behavior actually applies for most of the other components we have seen.

Configuring Service Activator

To create a Service Activator, use the 'service-activator' element with the 'input-channel' and 'ref'
attributes:

<int:service-activator input-channel="exanpl eChannel" ref="exanpl eHandl er"/>

The configuration above assumes that "exampleHandler" either contains a single method annotated
with the @ServiceActivator annotation or that it contains only one public method at all. To delegate to
an explicitly defined method of any object, simply add the "method" attribute.

<int:service-activator input-channel ="exanpl eChannel " ref="sonePoj 0" nethod="someMet hod"/>

In either case, when the service method returns a non-null value, the endpoint will attempt to send the
reply message to an appropriate reply channel. To determine the reply channel, it will first check if an
"output-channel" was provided in the endpoint configuration:

<int:service-activator input-channel ="exanpl eChannel" out put-channel ="repl yChannel "
ref ="somePoj 0" net hod="soneMet hod"/ >

If no "output-channel" is available, it will then check the Message's r epl yChannel header value. If
that value is available, it will then check its type. If it is a MessageChannel , the reply message will be
sent to that channel. If it is a St ri ng, then the endpoint will attempt to resolve the channel name to a
channel instance. If the channel cannot be resolved, then a Channel Resol uti onExcepti on will be
thrown. It it can be resolved, the Message will be sent there. This is the technique used for Request
Reply messaging in Spring Integration, and it is also an example of the Return Address pattern.

The argument in the service method could be either a Message or an arbitrary type. If the latter, then
it will be assumed that it is a Message payload, which will be extracted from the message and injected
into such service method. This is generally the recommended approach as it follows and promotes a
POJO model when working with Spring Integration. Arguments may also have @Header or @Headers
annotations as described in Section F.5, “Annotation Support”

© Note

The service method is not required to have any arguments at all, which means you can implement
event-style Service Activators, where all you care about is an invocation of the service method,

Spring Integration
3.0.1.RELEASE Reference Manual 108

Spring Integration

not worrying about the contents of the message. Think of it as a NULL JMS message. An example
use-case for such an implementation could be a simple counter/monitor of messages deposited
on the input channel.

Using a "ref" attribute is generally recommended if the custom Service Activator handler implementation
can be reused in other <servi ce- act i vat or > definitions. However if the custom Service Activator
handler implementation is only used within a single definition of the <ser vi ce- act i vat or >, you can
provide an inner bean definition:

<int:service-activator id="exanpl eServiceActivator" input-channel ="i nChannel "
out put - channel = "out Channel " met hod="f oo" >
<beans: bean cl ass="org. f oo. Exanpl eSer vi ceActivator"/>
</int:service-activator>

© Note

Using both the "ref" attribute and an inner handler definition in the same <servi ce-
act i vat or > configuration is not allowed, as it creates an ambiguous condition and will result
in an Exception being thrown.

Service Activators and the Spring Expression Language (SpEL)

Since Spring Integration 2.0, Service Activators can also benefit from SpEL (http:/
static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html).

For example, you may now invoke any bean method without pointing to the bean via a r ef attribute or
including it as an inner bean definition. For example:

<int:service-activator input-channel="in" out put-channel =" out"
expressi on="@ccount Servi ce. processAccount (payl oad, headers.accountld)"/>

<bean i d="account Servi ce" cl ass="foo. bar. Account"/>

In the above configuration instead of injecting 'accountService' using a r ef or as an inner bean, we
are simply using SpEL's @eanl d notation and invoking a method which takes a type compatible with
Message payload. We are also passing a header value. As you can see, any valid SpEL expression
can be evaluated against any content in the Message. For simple scenarios your Service Activators do
not even have to reference a bean if all logic can be encapsulated by such an expression.

<int:service-activator input-channel="in" output-channel ="out" expression="payload * 2"/>

In the above configuration our service logic is to simply multiply the payload value by 2, and SpEL lets
us handle it relatively easy.

7.4 Delayer

Introduction

A Delayer is a simple endpoint that allows a Message flow to be delayed by a certain interval. When a
Message is delayed, the original sender will not block. Instead, the delayed Messages will be scheduled
with an instance of or g. spri ngf ramewor k. schedul i ng. TaskSchedul er to be sent to the output
channel after the delay has passed. This approach is scalable even for rather long delays, since it does
not result in a large number of blocked sender Threads. On the contrary, in the typical case a thread pool
will be used for the actual execution of releasing the Messages. Below you will find several examples
of configuring a Delayer.

Spring Integration
3.0.1.RELEASE Reference Manual 109

Spring Integration

Configuring Delayer

The <del ayer > element is used to delay the Message flow between two Message Channels. As
with the other endpoints, you can provide the 'input-channel’ and 'output-channel' attributes, but the
delayer also has 'default-delay' and 'expression’ attributes (and 'expression’ sub-element) that are used
to determine the number of milliseconds that each Message should be delayed. The following delays
all messages by 3 seconds:

<int:del ayer id="del ayer" input-channel ="input"
def aul t - del ay="3000" out put - channel =" out put"/>

If you need per-Message determination of the delay, then you can also provide the SpEL expression
using the 'expression' attribute:

<int:delayer id="delayer" input-channel ="input" output-channel ="out put"
def aul t - del ay="3000" expressi on="headers['delay']"/>

In the example above, the 3 second delay would only apply when the expression evaluates to null for
a given inbound Message. If you only want to apply a delay to Messages that have a valid result of the
expression evaluation, then you can use a 'default-delay' of O (the default). For any Message that has
a delay of 0 (or less), the Message will be sent immediately, on the calling Thread.

@ Tip

The delay handler supports expression evaluation results that represent an interval in
milliseconds (any Object whose t oSt ri ng() method produces a value that can be parsed
into a Long) as well as j ava. uti | . Dat e instances representing an absolute time. In the first
case, the milliseconds will be counted from the current time (e.g. a value of 5000 would delay
the Message for at least 5 seconds from the time it is received by the Delayer). With a Date
instance, the Message will not be released until the time represented by that Date object. In
either case, a value that equates to a non-positive delay, or a Date in the past, will not result in
any delay. Instead, it will be sent directly to the output channel on the original sender's Thread.
If the expression evaluation result is not a Date, and can not be parsed as a Long, the default
delay (if any) will be applied.

© Important

The expression evaluation may throw an evaluation Exception for various reasons, including
an invalid expression, or other conditions. By default, such exceptions are ignored (logged at
DEBUG level) and the delayer falls back to the default delay (if any). You can modify this behavior
by setting the i gnor e- expr essi on- f ai | ur es attribute. By default this attribute is settot r ue
and the Delayer behavior is as described above. However, if you wish to not ignore expression
evaluation exceptions, and throw them to the delayer's caller, set the i gnor e- expr essi on-
fail ures attribute to f al se.

@ Tip
Notice in the example above that the delay expression is specified as header s[' del ay'] . This
is the SpEL | ndexer syntax to access a Map element (MessageHeader s implements Map),
it invokes: header s. get (" del ay") . For simple map element names (that do not contain ".")
you can also use the SpEL dot accessor syntax, where the above header expression can be
specified as header s. del ay. But, different results are achieved if the header is missing. In the
first case, the expression will evaluate to nul | ; the second will result in something like:

Spring Integration
3.0.1.RELEASE Reference Manual 110

Spring Integration

org. spri ngframewor k. expr essi on. spel . Spel Eval uati onExcepti on: EL1008E: (pos 8):
Field or property 'delay' cannot be found on object of
type 'org.springfranmework.integration. MessageHeaders

So, if there is a possibility of the header being omitted, and you want to fall back to the default
delay, it is generally more efficient (and recommended) to use the Indexer syntax instead of dot
property accessor syntax, because detecting the null is faster than catching an exception.

The delayer delegates to an instance of Spring's TaskSchedul er abstraction. The default scheduler
used by the delayer is the Thr eadPool TaskSchedul er instance provided by Spring Integration on
startup: Section F.3, “Configuring the Task Scheduler”. If you want to delegate to a different scheduler,
you can provide a reference through the delayer element's 'scheduler' attribute:

<int:del ayer id="del ayer" input-channel="input" out put-channel =" out put "
expr essi on="header s. del ay"
schedul er =" exanpl eTaskSchedul er "/ >

<t ask: schedul er id="exanpl eTaskSchedul er" pool -si ze="3"/>

O Tip

If you configure an external Thr eadPool TaskSchedul er you can set on this scheduler
property wai t For TasksToConpl et eOnShut down = t r ue. It allows successful completion of
‘delay' tasks, which already in the execution state (releasing the Message), when the application
is shutdown. Before Spring Integration 2.2 this property was available on the <del ayer >
element, because Del ayHandl er could create its own scheduler on the background. Since 2.2
delayer requires an external scheduler instance and wai t For TasksToConpl et eOnShut down
was deleted; you should use the scheduler's own configuration.

Q@ Tip

Also keep in mind Thr eadPool TaskSchedul er has a property
error Handl er which can be injected with some implementation of
org.springframework. util.ErrorHandl er. This handler allows to process an
Exception from the thread of the scheduled task sending the delayed message.
By default it uses an org.springfranmework.scheduling. support. TaskUtils
$Loggi ngEr r or Handl er and you will see a stack trace
in the logs. You might want to consider using an
org. springframework. i ntegration. channel . MessagePubl i shi ngErr or Handl er,
which sends an Error Message into an error-channel , either from the failed Message's
header or into the default er r or - channel .

Delayer and Message Store

The Del ayHandl er persists delayed Messages into the Message Group in the provided
MessagesSt or e. (The 'groupld’ is based on required 'id" attribute of <del ayer > element.) A delayed
message is removed from the MessageSt or e by the scheduled task just before the Del ayHandl er
sends the Message to the out put - channel . If the provided MessageSt or e is persistent (e.g.
JdbcMessagesSt or e) it provides the ability to not lose Messages on the application shutdown.
After application startup, the Del ayHandl er reads Messages from its Message Group in the
MessagesSt or e and reschedules them with a delay based on the original arrival time of the Message
(if the delay is numeric). For messages where the delay header was a Dat e, that is used when
rescheduling. If a delayed Message remained in the MessageSt or e more than its 'delay’, it will be sent
immediately after startup.

Spring Integration
3.0.1.RELEASE Reference Manual 111

Spring Integration

The <del ayer> can be enriched with mutually exclusive sub-elements <transactional >
or <advi ce-chain> The List of these AOP Advices is applied to the proxied internal
Del ayHandl er . Rel easeMessageHandl er, which has the responsibility to release the Message,
after the delay, on a Thr ead of the scheduled task. It might be used, for example, when the downstream
message flow throws an Exception and the Rel easeMessageHand! er's transaction will be rolled
back. In this case the delayed Message will remain in the persistent MessagesSt or e. You can use any
custom or g. aopal | i ance. aop. Advi ce implementation within the <advi ce- chai n>. A sample
configuration of the <del ayer > may look like this:

<int:delayer id="delayer" input-channel ="input" output-channel ="out put"
expressi on="header s. del ay"
message- st ore="j dbcMessageSt ore" >
<i nt:advi ce-chai n>
<beans: ref bean="customAdvi ceBean"/>
<t x: advi ce>
<tx:attributes>
<t x: net hod name="*" read-only="true"/>
</[tx:attributes>
</tx: advi ce>
</int:advi ce-chai n>
</int:del ayer>

The Del ayHandl er can be exported as a JMX MBean with managed operations
get Del ayedMessageCount and r eschedul ePer si st edMessages, which allows the rescheduling
of delayed persisted Messages at runtime, for example, if the TaskSchedul er has previously been
stopped. These operations can be invoked via a Cont rol Bus command:

Message<Stri ng> del ayer Reschedul i ngMessage =

MessageBui | der. wi t hPayl oad(" @ del ayer . handl er' . reschedul ePer si st edMessages()"). bui I d();
control BusChannel . send(del ayer Reschedul i ngMessage) ;

@ Note

For more information regarding the Message Store, JMX and the Control Bus, please read
Chapter 8, System Management.

7.5 Scripting support

With Spring Integration 2.1 we've added support for the JSR223 Scripting for Java specification,
introduced in Java version 6. This allows you to use scripts written in any supported language including
Ruby/JRuby, Javascript and Groovy to provide the logic for various integration components similar to
the way the Spring Expression Language (SpEL) is used in Spring Integration. For more information
about JSR223 please refer to the documentation

© Important
Note that this feature requires Java 6 or higher. Sun developed a JSR223 reference
implementation which works with Java 5 but it is not officially supported and we have not tested
it with Spring Integration.

In order to use a JVM scripting language, a JSR223 implementation for that language must be included
in your class path. Java 6 natively supports Javascript. The Groovy and JRuby projects provide JSR233
support in their standard distribution. Other language implementations may be available or under
development. Please refer to the appropriate project website for more information.

Spring Integration
3.0.1.RELEASE Reference Manual 112

http://jcp.org/aboutJava/communityprocess/pr/jsr223/
http://java.sun.com/developer/technicalArticles/J2SE/Desktop/scripting/
http://groovy.codehaus.org
http://jruby.org/

Spring Integration

© Important

Various JSR223 language implementations have been developed by third parties. A particular
implementation's compatibility with Spring Integration depends on how well it conforms to the
specification and/or the implementer's interpretation of the specification.

Q@ Tip
If you plan to use Groovy as your scripting language, we recommended you use Section 7.6,

“Groovy support” as it offers additional features specific to Groovy. However you will find this
section relevant as well.

Script configuration

Depending on the complexity of your integration requirements scripts may be provided inline as CDATA
in XML configuration or as a reference to a Spring resource containing the script. To enable scripting
support Spring Integration defines a Scri pt Execut i ngMessagePr ocessor which will bind the
Message Payload to a variable named payl oad and the Message Headers to a header s variable,
both accessible within the script execution context. All that is left for you to do is write a script that uses
these variables. Below are a couple of sample configurations:

Filter

<int:filter input-channel ="referencedScriptlnput">
<int-script:script lang="ruby" |ocation="sone/path/to/ruby/script/RubyFilterTests.rb"/>
</int:filter>

<int:filter input-channel="inlineScriptlnput">
<int-script:script |ang="groovy">
<! [CDATA[
return payl oad == ' good

11>
</int-script:script>
</int:filter>

Here, you see that the script can be included inline or can reference a resource location via the
| ocat i on attribute. Additionally the | ang attribute corresponds to the language name (or JSR223 alias)

Other Spring Integration endpoint elements which support scripting include router, service-activator,
transformer, and splitter. The scripting configuration in each case would be identical to the above
(besides the endpoint element).

Another useful feature of Scripting support is the ability to update (reload) scripts without having to
restart the Application Context. To accomplish this, specify the r ef r esh- check- del ay attribute on
the script element:

<int-script:script |location="..." refresh-check-del ay="5000"/>

In the above example, the script location will be checked for updates every 5 seconds. If the script is
updated, any invocation that occurs later than 5 seconds since the update will result in execution of
the new script.

<int-script:script location="..." refresh-check-del ay="0"/>

In the above example the context will be updated with any script modifications as soon as such
modification occurs, providing a simple mechanism for 'real-time' configuration. Any negative number
value means the script will not be reloaded after initialization of the application context. This is the default
behavior.

Spring Integration
3.0.1.RELEASE Reference Manual 113

Spring Integration

© Important

Inline scripts can not be reloaded.

<int-script:script location="..." refresh-check-del ay="-1"/>

Script variable bindings

Variable bindings are required to enable the script to reference variables externally provided to the
script's execution context. As we have seen, payl oad and header s are used as binding variables by
default. You can bind additional variables to a script via <var i abl e> sub-elements:

<script:script lang="js" |ocation="fool/bar/MScript.js">
<scri pt:variabl e name="f 00" val ue="fo00"/>
<script:variabl e name="bar" val ue="bar"/>
<script:variabl e name="date" ref="date"/>
</script:script>

As shown in the above example, you can bind a script variable either to a scalar value or a Spring bean
reference. Note that payl oad and header s will still be included as binding variables.

With Spring Integration 3.0, in addition to the vari abl e sub-element, the vari abl es attribute has
been introduced. This attribute and vari abl e sub-elements aren't mutually exclusive and you can
combine them within one scri pt component. However variables must be unique, regardless of where
they are defined. Also, since Spring Integration 3.0, variable bindings are allowed for inline scripts too:

<servi ce-activator input-channel="input">
<script:script lang="ruby" vari abl es="fo00=FOO, date-ref=dat eBean">
<scri pt:variabl e name="bar" ref="barBean"/>
<scri pt:variabl e name="baz" val ue="bar"/>
<! [CDATA[
payl oad. foo = foo
payl oad. date = date
payl oad. bar = bar
payl oad. baz = baz
payl oad
11>
</script:script>
</ servi ce-activator>

The example above shows a combination of an inline script, a vari abl e sub-element and a
vari abl es attribute. The vari abl es attribute is a comma-separated value, where each segment
contains an '=' separated pair of the variable and its value. The variable name can be suffixed with -
r ef ,asinthe dat e- r ef variable above. That means that the binding variable will have the name dat e,
but the value will be a reference to the dat eBean bean from the application context. This may be useful
when using Property Placeholder Configuration or command line arguments.

If you need more control over how variables are generated, you can implement your own Java class
using the Scri pt Var i abl eGener at or strategy:

public interface ScriptVariabl eGenerator {

Map<String, Object> generateScriptVariabl es(Message<?> nessage) ;

}

This interface requires you to implement the method gener at eScri pt Vari abl es(Message) . The
Message argument allows you to access any data available in the Message payload and headers and
the return value is the Map of bound variables. This method will be called every time the script is executed

Spring Integration
3.0.1.RELEASE Reference Manual 114

Spring Integration

for a Message. All you need to do is provide an implementation of Scri pt Vari abl eGener at or and
reference it with the scri pt - vari abl e- gener at or attribute:

<int-script:script |ocation="fool/bar/MScript.groovy"
scri pt-vari abl e- generat or ="vari abl eGenerator"/ >

<bean id="vari abl eGenerator" class="foo.bar. WScri ptVari abl eGenerator"/>

If a script-variabl e-generator is not provided, script components use
org. springframework.integration.scripting.DefaultScriptVariabl eGenerator,
which merges any provided <var i abl e>s with payload and headers variables from the Message in
its gener at eScri pt Vari abl es(Message) method.

© Important

You cannot provide both the scri pt - vari abl e- gener at or attribute and <var i abl e> sub-
element(s) as they are mutually exclusive.

7.6 Groovy support

In Spring Integration 2.0 we added Groovy support allowing you to use the Groovy scripting language to
provide the logic for various integration components similar to the way the Spring Expression Language
(SpEL) is supported for routing, transformation and other integration concerns. For more information
about Groovy please refer to the Groovy documentation which you can find on the project website

Groovy configuration

With Spring Integration 2.1, Groovy Support's configuration namespace is an extension of Spring
Integration's Scripting Support and shares the core configuration and behavior described in detail in
the Section 7.5, “Scripting support” section. Even though Groovy scripts are well supported by generic
Scripting Support, Groovy Support provides the Groovy configuration namespace which is backed by the
Spring Framework's or g. spri ngf ramewor k. scri pti ng. groovy. G oovyScri pt Fact ory and
related components, offering extended capabilities for using Groovy. Below are a couple of sample
configurations:

Filter

<int:filter input-channel="referencedScriptlnput">
<int-groovy:script |ocation="sone/path/to/groovy/filel G oovyFilterTests.groovy"/>
</int:filter>

<int:filter input-channel="inlineScriptlnput">
<i nt-groovy: scri pt ><! [CDATA[
return payl oad == ' good
]11></int-groovy: script>
</int:filter>

As the above examples show, the configuration looks identical to the general Scripting Support
configuration. The only difference is the use of the Groovy hamespace as indicated in the examples by
the int-groovy namespace prefix. Also note that the | ang attribute on the <scri pt > tag is not valid
in this namespace.

Groovy object customization

If you need to customize the Groovy object itself, beyond setting variables, you can reference a
bean that implements or g. spri ngf ramewor k. scri pting. groovy. G oovyObj ect Cust oni zer
via the cust oni zer attribute. For example, this might be useful if you want to implement a domain-

Spring Integration
3.0.1.RELEASE Reference Manual 115

http://groovy.codehaus.org

Spring Integration

specific language (DSL) by modifying the MetaClass and registering functions to be available within
the script:

<int:service-activator input-channel ="groovyChannel ">
<int-groovy:script |ocation="foo/ SomeScript.groovy" custom zer="groovyCustom zer"/>
</int:service-activator>

<beans: bean i d="groovyCustom zer" cl ass="org.foo. MyG oovyObj ect Cust omi zer"/>

Setting a custom GroovyObjectCustomizer is not mutually exclusive with <vari abl e> sub-elements
orthe scri pt-vari abl e- gener at or attribute. It can also be provided when defining an inline script.

With Spring Integration 3.0, in addition to the vari abl e sub-element, the vari abl es attribute
has been introduced. Also, groovy scripts have the ability to resolve a variable to a bean in the
BeanFact ory, if a binding variable was not provided with the name:

<i nt-groovy:script>

<! [CDATA[
entityManager. persi st (payl oad)
payl oad

11>

</int-groovy:script>

where variable ent i t yManager is an appropriate bean in the application context.

For more information regarding <var i abl e>,vari abl es,and scri pt - vari abl e- gener at or, see
the paragraph 'Script variable bindings' of the section called “Script configuration”.

Control Bus

As described in (EIP), the idea behind the Control Bus is that the same messaging system can be used
for monitoring and managing the components within the framework as is used for "application-level"
messaging. In Spring Integration we build upon the adapters described above so that it's possible to
send Messages as a means of invoking exposed operations. One option for those operations is Groovy
scripts.

<i nt-groovy: control - bus input-channel ="operati onChannel "/ >

The Control Bus has an input channel that can be accessed for invoking operations on the beans in
the application context.

The Groovy Control Bus executes messages on the input channel as Groovy scripts. It takes
a message, compiles the body to a Script, customizes it with a GroovyQbj ect Cust omi zer,
and then executes it. The Control Bus' MessagePr ocessor exposes all beans in the application
context that are annotated with @/hanagedResour ce, implement Spring's Li f ecycl e interface or
extend Spring's Cust oni zabl eThr eadCr eat or base class (e.g. several of the TaskExecut or and
TaskSchedul er implementations).

© Important
Be careful about using managed beans with custom scopes (e.g. ‘request’) in the Control
Bus' command scripts, especially inside an async message flow. If The Control Bus'
MessageProcessor can't expose a bean from the application context, you may end up
with some BeansExcepti on during command script's executing. For example, if a custom
scope's context is not established, the attempt to get a bean within that scope will trigger a
BeanCr eat i onExcepti on.

Spring Integration
3.0.1.RELEASE Reference Manual 116

http://www.eaipatterns.com/ControlBus.html

Spring Integration

If you need to further customize the Groovy objects, you can also provide a reference to a bean
that implements or g. spri ngframewor k. scri pting. groovy. G oovyQbj ect Cust om zer via
the cust oni zer attribute.

<i nt-groovy: control - bus i nput-channel ="i nput "
out put - channel =" out put "
cust om zer ="groovyCust om zer"/>

<beans: bean i d="groovyCustom zer" cl ass="org.foo. MG oovyObj ect Cust oni zer"/>

7.7 Adding Behavior to Endpoints

Prior to Spring Integration 2.2, you could add behavior to an entire Integration flow by adding an AOP
Advice to a poller's <advice-chain /> element. However, let's say you want to retry, say, just a ReST
Web Service call, and not any downstream endpoints.

For example, consider the following flow:
inbound-adapter->poller->http-gateway1->http-gateway2->jdbc-outbound-adapter

If you configure some retry-logic into an advice chain on the poller, and, the call to http-gateway?2 failed
because of a network glitch, the retry would cause both http-gatewayl and http-gateway?2 to be called a
second time. Similarly, after a transient failure in the jdbc-outbound-adapter, both http-gateways would
be called a second time before again calling the jdbc-outbound-adapter.

Spring Integration 2.2 adds the ability to add behavior to individual endpoints. This is achieved by the
addition of the <request-handler-advice-chain /> element to many endpoints. For example:

<i nt-http: out bound-gat eway i d="w t hAdvi ce"
url -expression=""http://local host/test1""
request - channel ="r equest s"
repl y- channel =" next Channel " >
<i nt:request-handl er - advi ce- chai n>
<ref bean="nyRetryAdvice" />
</ request - handl er - advi ce- chai n>
</int-http: out bound- gat eway>

In this case, myRetryAdvice will only be applied locally to this gateway and will not apply to further
actions taken downstream after the reply is sent to the nextChannel. The scope of the advice is limited
to the endpoint itself.

© Important

At this time, you cannot advise an entire <chain/> of endpoints. The schema does not allow a
<request-handler-advice-chain/> as a child element of the chain itself.

However, a <request-handler-advice-chain/> can be added to individual reply-producing
endpoints within a <chain/> element. An exception is that, in a chain that produces no reply,
because the last element in the chain is an outbound-channel-adapter, that last element cannot
be advised. If you need to advise such an element, it must be moved outside of the chain (with
the output-channel of the chain being the input-channel of the adapter. The adapter can then be
advised as normal. For chains that produce a reply, every child element can be advised.

Spring Integration
3.0.1.RELEASE Reference Manual 117

Spring Integration

Provided Advice Classes

In addition to providing the general mechanism to apply AOP Advice classes in this way, three standard
Advices are provided:

* RequestHandlerRetryAdvice

* RequestHandlerCircuitBreakerAdvice

» ExpressionEvaluatingRequestHandlerAdvice

These are each described in detail in the following sections.
Retry Advice

The retry advice (0.s.i.handl er. advi ce. Request Handl er Ret r yAdvi ce) leverages the rich
retry mechanisms provided by the Spring Retry project. The core component of spring-retry is the
Ret r yTenpl at e, which allows configuration of sophisticated retry scenarios, including Ret r yPol i cy
and Backof f Pol i cy strategies, with a number of implementations, as well as a Recover yCal | back
strategy to determine the action to take when retries are exhausted.

Stateless Retry

Stateless retry is the case where the retry activity is handled entirely within the advice, where the thread
pauses (if so configured) and retries the action.

Stateful Retry

Stateful retry is the case where the retry state is managed within the advice, but where an exception is
thrown and the caller resubmits the request. An example for stateful retry is when we want the message
originator (e.g. JMS) to be responsible for resubmitting, rather than performing it on the current thread.
Stateful retry needs some mechanism to detect a retried submission.

Further Information

For more information on spring-retry, refer to the project's javadocs, as well as the reference
documentation for Spring Batch, where spring-retry originated.

© Caution

The default back off behavior is no back off - retries are attempted immediately. Using a back off
policy that causes threads to pause between attempts may cause performance issues, including
excessive memory use and thread starvation. In high volume environments, back off policies
should be used with caution.

Configuring the Retry Advice
The following examples use a simple <service-activator />> that always throws an exception:

public class FailingService {

public void service(String message) {
throw new Runti meException("foo");

}

Spring Integration
3.0.1.RELEASE Reference Manual 118

https://github.com/SpringSource/spring-retry
http://static.springsource.org/spring-batch/reference/html/retry.html

Spring Integration

Simple Stateless Retry

This example uses the default RetryTemplate which has a SimpleRetryPolicy which tries 3 times. There
is no BackoffPolicy so the 3 attempts are made back-to-back-to-back with no delay between attempts.
There is no RecoveryCallback so, the result is to throw the exception to the caller after the final failed
retry occurs. In a Spring Integration environment, this final exception might be handled using an error-
channel on the inbound endpoint.

<int:service-activator input-channel="input" ref="failer" nethod="service">
<i nt:request-handl er - advi ce- chai n>
<bean cl ass="0.s.i.handl er. advi ce. Request Handl er Ret r yAdvi ce"/ >
</ request - handl er - advi ce- chai n>
</int:service-activator>

DEBUG [t ask-schedul er-2] preSend on channel 'input', message: [Payload=...]
DEBUG [t ask-schedul er-2] Retry: count=0

DEBUG [t ask- schedul er - 2] Checking for rethrow count=1

DEBUG [t ask-schedul er-2] Retry: count=1

DEBUG [t ask- schedul er - 2] Checki ng for rethrow count=2

DEBUG [t ask-schedul er-2] Retry: count =2

DEBUG [t ask- schedul er - 2] Checki ng for rethrow count=3

DEBUG [t ask-schedul er-2] Retry failed |last attenpt: count=3

Simple Stateless Retry with Recovery

This example adds a RecoveryCallback to the above example; it uses a
Err or MessageSendi ngRecover er to send an ErrorMessage to a channel.

<int:service-activator input-channel="input" ref="failer" method="service">
<i nt:request-handl er - advi ce- chai n>
<bean cl ass="0.s.i.handl er. advi ce. Request Handl er Ret r yAdvi ce" >
<property nanme="recoveryCal | back">
<bean cl ass="0.s.i.handl er. advi ce. Err or MessageSendi ngRecover er" >
<constructor-arg ref="nmyErrorChannel " />
</ bean>
</ property>
</ bean>
</ request - handl| er - advi ce- chai n>
</int:int:service-activator>

DEBUG [t ask-schedul er-2] preSend on channel 'input', message: [Payload=...]
DEBUG [t ask-schedul er-2] Retry: count=0

DEBUG [t ask- schedul er - 2] Checki ng for rethrow count=1

DEBUG [t ask-schedul er-2] Retry: count=1

DEBUG [t ask- schedul er - 2] Checki ng for rethrow count=2

DEBUG [t ask-schedul er-2] Retry: count =2

DEBUG [t ask-schedul er - 2] Checking for rethrow count=3

DEBUG [t ask-schedul er-2] Retry failed |last attenpt: count=3

DEBUG [t ask-schedul er - 2] Sendi ng Error Message :fail edMessage: [Payl oad=. . .]

Stateless Retry with Customized Policies, and Recovery

For more sophistication, we can provide the advice with a customized RetryTemplate. This example
continues to use the Sinpl eRetryPolicy but it increases the attempts to 4. It also adds an
Exponent i al Backof f Pol i cy where the first retry waits 1 second, the second waits 5 seconds and
the third waits 25 (for 4 attempts in all).

Spring Integration
3.0.1.RELEASE Reference Manual 119

Spring Integration

<int:service-activator input-channel="input" ref="failer" nethod="service">
<i nt:request-handl er - advi ce- chai n>
<bean cl ass="0.s.i.handl er. advi ce. Request Handl er Ret r yAdvi ce" >
<property nanme="recoveryCal | back">
<bean cl ass="0.s.i.handl er. advi ce. Err or MessageSendi ngRecover er" >
<constructor-arg ref="nyErrorChannel" />
</ bean>
</ property>
<property nane="retryTenpl ate" ref="retryTenpl ate" />
</ bean>
</ request - handl er - advi ce- chai n>
</int:service-activator>

<bean id="retryTenpl ate" class="org.springfranmework.retry.support.RetryTenpl ate">
<property name="retryPolicy">
<bean cl ass="org. springframework.retry. policy. Si npl eRetryPolicy">
<property nanme="maxAttenpts" val ue="4" />
</ bean>
</ property>
<property name="backCr f Policy">
<bean cl ass="org. spri ngfranework. retry. backoff. Exponenti al BackCf f Pol i cy" >
<property nane="initiallnterval" val ue="1000" />
<property name="multiplier" value="5" />
</ bean>
</ property>
</ bean>

27.058 DEBUG [task-schedul er-1] preSend on channel 'input', message: [Payl oad=...]
27.071 DEBUG [t ask-schedul er-1] Retry: count=0

27.080 DEBUG [task-schedul er-1] Sl eepi ng for 1000

28. 081 DEBUG [t ask-schedul er-1] Checking for rethrow count=1

28. 081 DEBUG [t ask-schedul er-1] Retry: count=1

28. 081 DEBUG [task-schedul er-1] Sl eepi ng for 5000

33. 082 DEBUG [task-schedul er-1] Checking for rethrow count=2

33. 082 DEBUG [t ask-schedul er-1] Retry: count=2

33. 083 DEBUG [t ask-schedul er-1] Sl eepi ng for 25000

58. 083 DEBUG [t ask-schedul er- 1] Checking for rethrow count=3

58. 083 DEBUG [t ask-schedul er-1] Retry: count=3

58. 084 DEBUG [t ask-schedul er-1] Checking for rethrow count=4

58. 084 DEBUG [task-scheduler-1]Retry failed |last attenpt: count=4

58. 086 DEBUG [t ask-schedul er-1] Sendi ng Error Message :fail edMessage: [Payl oad=. . .]

Simple Stateful Retry with Recovery

To make retry stateful, we need to provide the Advice with a RetryStateGenerator implementation.
This class is used to identify a message as being a resubmission so that the RetryTemplate
can determine the current state of retry for this message. The framework provides a
Spel Expressi onRet rySt at eGener at or which determines the message identifier using a SpEL
expression. This is shown below; this example again uses the default policies (3 attempts with no back
off); of course, as with stateless retry, these policies can be customized.

Spring Integration
3.0.1.RELEASE Reference Manual 120

Spring Integration

<int:service-activator input-channel="input" ref="failer" nethod="service">
<i nt:request-handl er - advi ce- chai n>
<bean cl ass="0.s.i.handl er. advi ce. Request Handl er Ret r yAdvi ce" >
<property name="retryStateCenerator">
<bean cl ass="0.s.i.handl er. advi ce. Spel Expr essi onRet rySt at eGener at or" >
<constructor-arg val ue="headers['jnms_nessageld']" />
</ bean>
</ property>
<property nanme="recoveryCal | back">
<bean cl ass="0.s.i.handl er. advi ce. Err or MessageSendi ngRecover er" >
<constructor-arg ref="nyErrorChannel " />
</ bean>
</ property>
</ bean>
</int:request-handl er-advi ce-chai n>
</int:service-activator>

24. 351 DEBUG [Cont ai ner #0- 1] preSend on channel 'input', message: [Payload=...]
24. 368 DEBUG [Cont ai ner #0- 1] Retry: count =0

24. 387 DEBUG [Cont ai ner #0- 1] Checki ng for rethrow count=1

24.387 DEBUG [Cont ai ner#0-1] Rethrow in retry for policy: count=1

24.387 WARN [Contai ner#0-1]failure occurred in gateway sendAndReceive

org. springframework. i ntegrati on. Messagi ngException: Failed to invoke handl er

Caused by: java.lang. Runti meException: foo
24.391 DEBUG [Cont ai ner#0-1] I nitiating transaction rollback on application exception

25. 412 DEBUG [Cont ai ner #0- 1] preSend on channel 'input', nessage: [Payl oad=...]
25. 412 DEBUG [Cont ai ner #0- 1] Retry: count =1

25. 413 DEBUG [Cont ai ner #0- 1] Checki ng for rethrow count=2

25. 413 DEBUG [Cont ai ner#0-1] Rethrow in retry for policy: count=2

25.413 WARN [Cont ai ner#0-1]failure occurred in gateway sendAndRecei ve

org. springframewor k. i ntegrati on. Messagi ngException: Failed to invoke handl er

Caused by: java.lang. Runti meException: foo
25. 414 DEBUG [Cont ai ner#0-1] I nitiating transaction rollback on applicati on exception

26. 418 DEBUG [Cont ai ner #0- 1] preSend on channel 'input', message: [Payload=...]
26. 418 DEBUG [Cont ai ner #0- 1] Retry: count =2

26. 419 DEBUG [Cont ai ner #0- 1] Checki ng for rethrow. count=3

26. 419 DEBUG [Cont ai ner#0-1] Rethrow in retry for policy: count=3

26.419 WARN [Contai ner#0-1]failure occurred in gateway sendAndRecei ve

org. springframework. integrati on. Messagi ngException: Failed to invoke handl er

Caused by: java.lang. Runti meException: foo
26. 420 DEBUG [Cont ai ner#0-1]Initiating transaction rollback on applicati on exception
27. 425 DEBUG [Cont ai ner #0- 1] preSend on channel 'input', message: [Payload=...]

27.426 DEBUG [Cont ai ner#0-1] Retry failed | ast attenpt: count=3
27.426 DEBUG [Cont ai ner #0- 1] Sendi ng Error Message :fail edMessage: [Payl oad=. . .]

Comparing with the stateless examples, you can see that with stateful retry, the exception is thrown to
the caller on each failure.

Exception Classification for Retry

Spring Retry has a great deal of flexibility for determining which exceptions can invoke retry. The default
configuration will retry for all exceptions and the exception classifier just looks at the top level exception.

Spring Integration
3.0.1.RELEASE Reference Manual 121

Spring Integration

If you configure it to, say, only retry on Bar Except i on and your application throws a FooExcepti on
where the cause is a Bar Except i on, retry will not occur.

Since Spring Retry 1.0.3, the Bi nar yExcepti onCl assifi er has a property traver seCauses
(default f al se). When t r ue it will traverse exception causes until it finds a match or there is no cause.

To use this classifier for retry, use a Si npl eRet r yPol i cy created with the constructor that takes the
max attempts, the Map of Excepti ons and the boolean (traverseCauses), and inject this policy into
the Ret ryTenpl at e.

Circuit Breaker Advice

The general idea of the Circuit Breaker Pattern is that, if a service is not
currently available, then don't waste time (and resources) trying to wuse it. The
0.s.i.handl er. advi ce. Request Handl er Gi r cui t Br eaker Advi ce implements this pattern.
When the circuit breaker is in the closed state, the endpoint will attempt to invoke the service. The circuit
breaker goes to the open state if a certain number of consecutive attempts fail; when it is in the open
state, new requests will "fail fast" and no attempt will be made to invoke the service until some time
has expired.

When that time has expired, the circuit breaker is set to the half-open state. When in this state, if even
a single attempt fails, the breaker will immediately go to the open state; if the attempt succeeds, the
breaker will go to the closed state, in which case, it won't go to the open state again until the configured
number of consecutive failures again occur. Any successful attempt resets the state to zero failures for
the purpose of determining when the breaker might go to the open state again.

Typically, this Advice might be used for external services, where it might take some time to fail (such
as a timeout attempting to make a network connection).

The RequestHandl erCircuitBreakerAdvice has two properties: threshold and
hal f OpenAf t er. The threshold property represents the number of consecutive failures that need to
occur before the breaker goes open. It defaults to 5. The halfOpenAfter property represents the time after
the last failure that the breaker will wait before attempting another request. Default is 1000 milliseconds.

Example:

Spring Integration
3.0.1.RELEASE Reference Manual 122

Spring Integration

<int:service-activator input-channel="input" ref="failer" nethod="service">
<i nt:request-handl er - advi ce- chai n>
<bean cl ass="0.s.i.handl er. advi ce. Request Handl er G r cui t Br eaker Advi ce" >
<property nanme="t hreshol d* val ue="2" />
<property nanme="hal f OpenAfter" val ue="12000" />
</ bean>
</int:request-handl er-advi ce-chai n>
</int:service-activator>

05. 617 DEBUG [task-schedul er-1] preSend on channel 'input', message: [Payload=...]
05. 638 ERROR [t ask-schedul er-1] org. spri ngframework. i ntegrati on. MessageHandl i ngExcepti on:
java. | ang. Runt i mreExcepti on: foo

10. 598 DEBUG [t ask-schedul er-2] preSend on channel 'input', nessage: [Payload=...]
10. 600 ERROR [t ask-schedul er-2]org. springfranmework.integration. MessageHandl i ngExcepti on:
java. | ang. Runt i meExcepti on: foo

15. 598 DEBUG [t ask-schedul er-3] preSend on channel 'input', nessage: [Payload=...]
15. 599 ERROR [t ask-schedul er-3]org. springfranework.integration. Messagi ngeException: Crcuit
Breaker is Open for ServiceActivator

20. 598 DEBUG [t ask-schedul er-2] preSend on channel 'input', message: [Payload=...]
20. 598 ERROR [task-schedul er-2] org. springfranmework. i ntegrati on. Messagi ngException: Circuit
Breaker is Open for ServiceActivator

25.598 DEBUG [t ask-schedul er-5] preSend on channel 'input', nessage: [Payload=...]
25. 601 ERROR [task-schedul er-5]org. springframework. integrati on. MessageHandl i ngExcepti on:
java. | ang. Runt i meExcepti on: foo

30. 598 DEBUG [t ask-schedul er-1] preSend on channel 'input', nessage: [Payl oad=foo...]
30. 599 ERROR [task-schedul er-1] org. springframework. integrati on. Messagi ngException: Crcuit
Breaker is Open for ServiceActivator

In the above example, the threshold is set to 2 and halfOpenAfter is set to 12 seconds; a new request
arrives every 5 seconds. You can see that the first two attempts invoked the service; the third and fourth
failed with an exception indicating the circuit breaker is open. The fifth request was attempted because
the request was 15 seconds after the last failure; the sixth attempt fails immediately because the breaker
immediately went to open.

Expression Evaluating Advice

The final supplied advice class is the
0.s.i.handl er. advi ce. Expr essi onEval uat i ngRequest Handl er Advi ce. This advice is
more general than the other two advices. It provides a mechanism to evaluate an expression on the
original inbound message sent to the endpoint. Separate expressions are available to be evaluated,
either after success, or failure. Optionally, a message containing the evaluation result, together with the
input message, can be sent to a message channel.

A typical use case for this advice might be with an <ftp:outbound-channel-adapter />, perhaps to move
the file to one directory if the transfer was successful, or to another directory if it fails:

The Advice has properties to set an expression when successful, an expression for failures,
and corresponding channels for each. For the successful case, the message sent to the
successChannel is an Advi ceMessage, with the payload being the result of the expression
evaluation, and an additional property i nput Message which contains the original message sent to
the handler. A message sent to the failureChannel (when the handler throws an excecption) is an
ErrorMessage with a payload of MessageHand!l i ngExpr essi onEval uat i ngAdvi ceExcepti on.

Spring Integration
3.0.1.RELEASE Reference Manual 123

Spring Integration

Like all Messagi ngExcept i ons, this payload has f ai | edMessage and cause properties, as well as
an additional property eval uat i onResul t , containing the result of the expression evaluation.

Custom Advice Classes

In addition to the provided Advice classes above, you can implement your own Advice classes. While you
can provide any implementation of or g. aopal | i ance. aop. Advi ce, it is generally recommended
that you subclass o.s.i.handl er. advi ce. Abst r act Request Handl er Advi ce. This has the
benefit of avoiding writing low-level Aspect Oriented Programming code as well as providing a starting
point that is specifically tailored for use in this environment.

Subclasses need to implement the dolnvoke() method:

/**

* Subcl asses inplement this nmethod to apply behavior to the {@ink MessageHandl er}

cal | back. execut e()

* invokes the handler nethod and returns its result, or null).

* @aram cal | back Subcl asses i nvoke the execute() nmethod on this interface to invoke the
handl er net hod.

* @aramtarget The target handl er.

* @aram message The nessage that will be sent to the handl er.

* @eturn the result after invoking the {@ink MessageHandl er}.

* @hrows Exception

*/

protected abstract Object dol nvoke(ExecutionCallback call back, Cbject target, Message<?>
message) throws Exception;

The callback parameter is simply a convenience to avoid subclasses dealing with AOP directly; invoking
the cal | back. execut e() method invokes the message handler.

The target parameter is provided for those subclasses that need to maintain state for a specific handler,
perhaps by maintaining that state in a Map, keyed by the target. This allows the same advice to be
applied to multiple handlers. The Request Handl er Ci r cui t Br eaker Advi ce uses this to keep circuit
breaker state for each handler.

The message parameter is the message that will be sent to the handler. While the advice cannot
modify the message before invoking the handler, it can modify the payload (if it has mutable properties).
Typically, an advice would use the message for logging and/or to send a copy of the message
somewhere before or after invoking the handler.

The return value would normally be the value returned by call back.execute();
but the advice does have the abilty to modify the return value. Note that only
Abst r act Repl yPr oduci ngMessageHandl er s return a value.

public class MyAdvice extends Abstract Request Handl er Advi ce {

@verride
protected Cbject dol nvoke(ExecutionCall back cal | back, Cbject target, Message<?>
message) throws Exception {
/] add code before the invocation
bj ect result = call back. execute();
/| add code after the invocation
return result;

Spring Integration
3.0.1.RELEASE Reference Manual 124

Spring Integration

© Note

In addition to the execute() method, the Executi onCal | back provides an additional
method cl oneAndExecute(). This method must be used in cases where the
invocation might be called multiple times within a single execution of dol nvoke(),
such as in the RequestHandl er RetryAdvi ce. This is required because the Spring
AOP org. springframewor k. aop. franewor k. Ref | ecti veMet hodl nvocati on object
maintains state of which advice in a chain was last invoked,; this state must be reset for each call.

For more information, see the ReflectiveMethodInvocation JavaDocs.

Other Advice Chain Elements

While the abstract class mentioned above is provided as a convenience, you can add any Advi ce
to the chain, including a transaction advice.

Advising Filters

There is an additional consideration when advising Fi | t er s. By default, any discard actions (when the
filter returns false) are performed within the scope of the advice chain. This could include all the flow
downstream of the discard channel. So, for example if an element downstream of the discard-channel
throws an exception, and there is a retry advice, the process will be retried. This is also the case if
throwExceptionOnRejection is set to true (the exception is thrown within the scope of the advice).

Setting discard-within-advice to "false" modifies this behavior and the discard (or exception) occurs after
the advice chain is called.

Advising Endpoints Using Annotations

When configuring certain endpoints using annotations (@i | t er , @er vi ceActi vator, @plitter,
and @r ansf or mer), you can supply a bean name for the advice chain in the advi ceChai n attribute.
In addition, the @i | t er annotation also has the di scar dW t hi nAdvi ce attribute, which can be used
to configure the discard behavior as discussed in the section called “Advising Filters”. An example with
the discard being performed after the advice is shown below.

@kessageEndpoi nt
public class MyAdvi sedFilter {

@il ter(inputChannel ="i nput", output Channel ="out put",
advi ceChai n="advi ceChai n", discardWthi nAdvi ce="fal se")
public boolean filter(String s) {
return s.contains("good");
}
}

Ordering Advices within an Advice Chain

Advice classes are "around" advices and are applied in a nested fashion. The first advice is the
outermost, the last advice the innermost (closest to the handler being advised). It is important to put the
advice classes in the correct order to achieve the functionality you desire.

For example, let's say you want to add a retry advice and a transaction advice. You may want to place
the retry advice advice first, followed by the transaction advice. Then, each retry will be performed in a

Spring Integration
3.0.1.RELEASE Reference Manual 125

http://static.springsource.org/spring-framework/docs/current/javadoc-api/org/springframework/aop/framework/ReflectiveMethodInvocation.html

Spring Integration

new transaction. On the other hand, if you want all the attempts, and any recovery operations (in the retry
Recover yCal | back), to be scoped within the transaction, you would put the transaction advice first.

7.8 Logging Channel Adapter

The <l oggi ng- channel - adapt er/ > is often used in conjunction with a Wire Tap, as discussed in
the section called “Wire Tap”. However, it can also be used as the ultimate consumer of any flow. For
example, consider a flow that ends with a <ser vi ce- act i vat or/ > that returns a result, but you wish
to discard that result. To do that, you could send the result to Nul | Channel . Alternatively, you can route
it to an | NFOlevel <| oggi ng- channel - adapt er/ >; that way, you can see the discarded message
when logging at | NFOlevel, but not see it when logging at, say, WARN level. With a Nul | Channel , you
would only see the discarded message when logging at DEBUG level.

<i nt: | oggi ng- channel - adapt er
channel =""0O
| evel =" 1 NFO'O
expressi on=""0
| og-full-nessage="fal se" [
| ogger - nane=""0/>

0 The channel connecting the logging adapter to an upstream component.

The logging level at which messages sent to this adapter will be logged. Default: | NFO

O A SpEL expression representing exactly what part(s) of the message will be logged. Default:
payl oad - just the payload will be logged. This attribute cannot be specified if | og-ful I -
nmessage is specified.

O When true, the entire message will be logged (including headers). Default: f al se - just the
payload will be logged. This attribute cannot be specified if expr essi on is specified.

O Specifies the name of the logger (known as category in |og4j) used for log
messages created by this adapter. This enables setting the log name (in the logging
subsystem) for individual adapters. By default, all adapters will log under the name
org. springframework. i ntegration. handl er. Loggi ngHandl er.

O

Spring Integration
3.0.1.RELEASE Reference Manual 126

Spring Integration

8. System Management

8.1 JMX Support

Spring Integration provides Channel Adapters for receiving and publishing JMX Notifications. There is
also an Inbound Channel Adapter for polling JIMX MBean attribute values, and an Outbound Channel
Adapter for invoking JMX MBean operations.

Notification Listening Channel Adapter

The Notification-listening Channel Adapter requires a JMX ObjectName for the MBean that publishes
notifications to which this listener should be registered. A very simple configuration might look like this:

<int-jnx:notification-I|istening-channel -adapter id="adapter"
channel =" channel "
obj ect - nane="exanpl e. domai n: nanme=publ i sher"/ >

@ Tip
The notification-listening-channel-adapter registers with an MBeanSer ver at startup, and the
default bean name is mbeanServer which happens to be the same bean name generated when
using Spring's <context:mbean-server/> element. If you need to use a different name, be sure
to include the mbean-server attribute.

The adapter can also accept areferencetoaNoti fi cati onFi | t er and a handback Object to provide
some context that is passed back with each Notification. Both of those attributes are optional. Extending
the above example to include those attributes as well as an explicit MBeanSer ver bean name would
produce the following:

<int-jnx:notification-listening-channel -adapter id="adapter"
channel =" channel "
nbean- server =" soneSer ver"
obj ect - nane="exanpl e. donai n: nane=sonePubl i sher"
notification-filter="notificationFilter"
handback="myHandback" / >

The Notification-listening Channel Adapter is event-driven and registered with the MBeanSer ver
directly. It does not require any poller configuration.

@ Note

For this component only, the object-name attribute can contain an ObjectName pattern (e.g.
"org.foo:type=Bar,name=*") and the adapter will receive notifications from all MBeans with
ObjectNames that match the pattern. In addition, the object-name attribute can contain a SpEL
reference to a <util:list/> of ObjectName patterns:

<j nx:notification-listening-channel -adapter id="manyNoti fi cati onsAdapter"
channel ="manyNot i fi cati onsChannel "
obj ect - name="#{patterns}"/>

<util:list id="patterns">
<val ue>org. f 0o: t ype=Foo, nane=*</ val ue>
<val ue>org. f 0oo: t ype=Bar, name=*</ val ue>
<futil:list>

The names of the located MBean(s) will be logged when DEBUG level logging is enabled.

Spring Integration
3.0.1.RELEASE Reference Manual 127

Spring Integration

Notification Publishing Channel Adapter

The Natification-publishing Channel Adapter is relatively simple. It only requires a JMX ObjectName in
its configuration as shown below.

<cont ext : mhean- export/ >

<int-jnx:notification-publishing-channel -adapter id="adapter"
channel =" channel "
obj ect - nane="exanpl e. donmai n: nane=publ i sher"/>

It does also require that an MBeanExpor t er be presentin the context. That is why the <context:mbean-
export/> element is shown above as well.

When Messages are sent to the channel for this adapter, the Notification is created from the Message
content. If the payload is a String it will be passed as the message text for the Notification. Any other
payload type will be passed as the userData of the Notification.

JMX Notifications also have a type, and it should be a dot-delimited String. There are two ways to
provide the type. Precedence will always be given to a Message header value associated with the
JnxHeader s. NOTI FI CATI ON_TYPE key. On the other hand, you can rely on a fallback default-
notification-type attribute provided in the configuration.

<cont ext : mhean- export/ >

<int-jnx:notification-publishing-channel -adapter id="adapter"
channel ="channel "
obj ect - nane="exanpl e. donmai n: nane=publ i sher"
defaul t-notification-type="sone.default.type"/>

Attribute Polling Channel Adapter

The Attribute Polling Channel Adapter is useful when you have a requirement, to periodically check on
some value that is available through an MBean as a managed attribute. The poller can be configured
in the same way as any other polling adapter in Spring Integration (or it's possible to rely on the default
poller). The object-name and attribute-name are required. An MBeanServer reference is also required,
but it will automatically check for a bean named mbeanServer by default, just like the Natification-
listening Channel Adapter described above.

<int-jnx:attribute-polling-channel -adapter id="adapter"
channel ="channel "
obj ect - nane="exanpl e. donai n: nane=soneSer vi ce"
attri but e- name="1nvocati onCount" >
<int:poller max-nmessages-per-poll="1" fixed-rate="5000"/>
</int-jmx:attribute-polling-channel -adapter>

Tree Polling Channel Adapter

The Tree Polling Channel Adapter queries the JMX MBean tree and sends a message with a payload
that is the graph of objects that matches the query. By default the MBeans are mapped to primitives and
simple Objects like Map, List and arrays - permitting simple transformation, for example, to JSON. An
MBeanServer reference is also required, but it will automatically check for a bean named mbeanServer
by default, just like the Notification-listening Channel Adapter described above. A basic configuration
would be:

Spring Integration
3.0.1.RELEASE Reference Manual 128

Spring Integration

<int-jnx:tree-polling-channel -adapter id="adapter"
channel =" channel "
quer y- nane="exanpl e. domai n: t ype=*">
<int:poller max-messages-per-poll="1" fixed-rate="5000"/>
</int-jm:tree-polling-channel - adapter>

This will include all attributes on the MBeans selected. You can filter the attributes by providing an
MBeanOhj ect Convert er that has an appropriate filter configured. The converter can be provided
as a reference to a bean definition using the convert er attribute, or as an inner <bean/> definition.
A Def aul t MBeanObj ect Convert er is provided which can take a MBeanAttri buteFilter inits
constructor argument.

Two standard filters are provided; the NanedFi el dsMBeanAt tri but eFi | t er allows you to specify a
list of attributes to include and the Not NamedFi el dsiMBeanAttri but eFi | t er allows you to specify
a list of attributes to exclude. You can also implement your own filter

Operation Invoking Channel Adapter

The operation-invoking-channel-adapter enables Message-driven invocation of any managed operation
exposed by an MBean. Each invocation requires the operation name to be invoked and the ObjectName
of the target MBean. Both of these must be explicitly provided via adapter configuration:

<i nt-j nx: oper ati on-i nvoki ng- channel - adapt er i d="adapter"
obj ect - nane="exanpl e. domai n: name=Test Bean"
oper ati on- nane="pi ng"/ >

Then the adapter only needs to be able to discover the mbeanServer bean. If a different bean name is
required, then provide the mbean-server attribute with a reference.

The payload of the Message will be mapped to the parameters of the operation, if any. A Map-typed
payload with String keys is treated as name/value pairs, whereas a List or array would be passed as
a simple argument list (with no explicit parameter names). If the operation requires a single parameter
value, then the payload can represent that single value, and if the operation requires no parameters,
then the payload would be ignored.

If you want to expose a channel for a single common operation to be invoked by Messages that need
not contain headers, then that option works well.

Operation Invoking Outbound Gateway

Similar to the operation-invoking-channel-adapter Spring Integration also provides a operation-invoking-
outbound-gateway, which could be used when dealing with non-void operations and a return value
is required. Such return value will be sent as message payload to the reply-channel specified by this
Gateway.

<i nt-j nx: oper ati on-i nvoki ng- out bound- gat eway request -channel ="request Channel "
repl y- channel ="r epl yChannel "
obj ect-nane="o0.s.i.jnm.config:type=Test Bean, name=t est BeanGat eway"
oper ati on-nanme="t est Wt hReturn"/>

If the reply-channel attribute is not provided, the reply message will be sent to the channel that is
identified by the MessageHeader s. REPLY_CHANNEL header. That header is typically auto-created by
the entry point into a message flow, such as any Gateway component. However, if the message flow

Spring Integration
3.0.1.RELEASE Reference Manual 129

Spring Integration

was started by manually creating a Spring Integration Message and sending it directly to a Channel,
then you must specify the message header explicitly or use the provided reply-channel attribute.

MBean Exporter

Spring Integration components themselves may be exposed as MBeans when
the |Integrati onMBeanExporter is configured. To create an instance of the
I nt egr ati onMBeanExport er, define a bean and provide a reference to an MBeanSer ver and
a domain name (if desired). The domain can be left out, in which case the default domain is
org.springframework.integration.

<i nt-j mx: mbean-export id="integrati onMBeanExporter"
def aul t - domai n="ny. conpany. donai n" server="nbeanServer"/>

<bean i d="nbeanServer" class="org. springfranework.jnmx.support.MBeanServer Fact or yBean" >
<property nane="|ocat eExi sti ngServer|fPossi bl e" val ue="true"/>
</ bean>

Once the exporter is defined, start up your application with:

- Dcom sun. managenent . j nxr enot e

- Dcom sun. nanagenent . j nxr enot e. port =6969

- Dcom sun. nanagenent . j nxr enot e. ssl =f al se

- Dcom sun. managenent . j nxr enot e. aut hent i cat e=f al se

Then start JConsole (free with the JDK), and connect to the local process on | ocal host: 6969 to
get a look at the management endpoints exposed. (The port and client are just examples to get you
started quickly, there are other JMX clients available and some offer more sophisticated features than
JConsole.)

© Important

The MBean exporter is orthogonal to the one provided in Spring core - it registers message
channels and message handlers, but not itself. You can expose the exporter itself, and certain
other components in Spring Integration, using the standard <cont ext : nbean- export/ > tag.
The exporter has a some metrics attached to it, for instance a count of the number of active
handlers and the number of queued messages.

It also has a useful operation, as discussed in the section called “Orderly Shutdown Managed
Operation”.

MBean ObjectNames

All the MessageChannel , MessageHandl er and MessageSour ce instances in the application are
wrapped by the MBean exporter to provide management and monitoring features. The generated JMX
object names for each component type are listed in the table below:

Table 8.1.
Component Type ObjectName
MessageChannel 0.s.i:type=MessageChannel,name=<channelName>
MessageSource o0.s.i:type=MessageSource,name=<channelName>,bean=<source>
MessageHandler 0.s.i;type=MessageSource,name=<channelName>,bean=<source>

Spring Integration
3.0.1.RELEASE Reference Manual 130

Spring Integration

The bean attribute in the object names for sources and handlers takes one of the values in the table
below:

Table 8.2.
Bean Value Description

endpoint The bean name of the enclosing endpoint (e.g. <service-activator>) if there
is one

anonymous An indication that the enclosing endpoint didn't have a user-specified bean
name, so the JMX name is the input channel name

internal For well-known Spring Integration default components

handler None of the above: fallback to the toString() of the object being

monitored (handler or source)

Custom elements can be appended to the object name by providing a reference to a Properties
object in the obj ect - nane- st ati c- properti es attribute.

Also, since Spring Integration 3.0, you can use a custom ObjectNamingStrategy using the obj ect -
nam ng- st rat egy attribute. This permits greater control over the naming of the MBeans. For
example, to group all Integration MBeans under an 'Integration’ type. A simple custom naming strategy
implementation might be:

public class Namer inplenents CbjectNam ngStrategy {

private final ObjectNam ngStrategy real Nanmer = new KeyNani ngStrategy();

@verride

publ i c Obj ect Name get Obj ect Name(Obj ect managedBean, String beanKey) throws

Mal f or nedObj ect NaneExcepti on {
String actual BeanKey = beanKey. repl ace("type=", "type=Integration, conponent Type=");
return real Namer. get Obj ect Name(nanagedBean, act ual BeanKey);

}

The beanKey argument is a String containing the standard object name beginning with the def aul t -
domai n and including any additional static properties. This example simply moves the standard t ype
partto conponent Type and sets the t ype to 'Integration’, enabling selection of all Integration MBeans
in one query: " nry. domai n: t ype=Il nt egr ati on, *. This also groups the beans under one tree entry
under the domain in tools like VisualVM.

© Note

The default naming strategy is a MetadataNamingStrategy. The exporter propagates the
def aul t - donai n to that object to allow it to generate a fallback object name if parsing of the
bean key fails. If your custom naming strategy is a Met adat aNam ngSt r at egy (or subclass),
the exporter will not propagate the def aul t - donmi n; you will need to configure it on your
strategy bean.

MessageChannel MBean Features

Message channels report metrics according to their concrete type. If you are looking at a
Di r ect Channel , you will see statistics for the send operation. If it is a QueueChannel , you will also
see statistics for the receive operation, as well as the count of messages that are currently buffered by

Spring Integration
3.0.1.RELEASE Reference Manual 131

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jmx/export/naming/ObjectNamingStrategy.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jmx/export/naming/MetadataNamingStrategy.html

Spring Integration

this QueueChannel . In both cases there are some metrics that are simple counters (message count
and error count), and some that are estimates of averages of interesting quantities. The algorithms used
to calculate these estimates are described briefly in the table below:

Table 8.3.
Metric Type Example Algorithm

Count Send Count Simple incrementer. Increase by one when an event

occurs.

Duration Send Duration (method | Exponential Moving Average with decay factor 10.
execution time in | Average of the method execution time over roughly the
milliseconds) last 10 measurements.

Rate Send Rate (number of | Inverse of Exponential Moving Average of the interval
operations per second) between events with decay in time (lapsing over 60

seconds) and per measurement (last 10 events).

Ratio Send Error Ratio (ratio of | Estimate the success ratio as the Exponential Moving
errors to total sends) Average of the series composed of values 1 for

success and 0 for failure (decaying as per the rate
measurement over time and events). Error ratio is 1 -
success ratio.

A feature of the time-based average estimates is that they decay with time if no new measurements
arrive. To help interpret the behaviour over time, the time (in seconds) since the last measurement is
also exposed as a metric.

There are two basic exponential models: decay per measurement (appropriate for duration and anything
where the number of measurements is part of the metric), and decay per time unit (more suitable for rate
measurements where the time in between measurements is part of the metric). Both models depend
on the fact that

‘S(n) = sun(i=0,i=n) wi) x(i)

has a special form whenw(i) = r”i,with r=const ant:

‘S(n) = x(n) +r S(n-1)

(so you only have to store S(n- 1) , not the whole series x(i), to generate a new metric estimate from
the last measurement). The algorithms used in the duration metrics use r =exp(- 1/ M with M=10. The
net effect is that the estimate S(n) is more heavily weighted to recent measurements and is composed
roughly of the last Mmeasurements. So Mis the "window" or lapse rate of the estimate In the case of
the vanilla moving average, i is a counter over the number of measurements. In the case of the rate we
interpret i as the elapsed time, or a combination of elapsed time and a counter (so the metric estimate
contains contributions roughly from the last Mmeasurements and the last T seconds).

Orderly Shutdown Managed Operation

The MBean exporter provides a JMX operation to shut down the application in an orderly manner,
intended for use before terminating the JVM.

public void stopActiveConponents(bool ean force, |ong howiLong)

Spring Integration
3.0.1.RELEASE Reference Manual 132

Spring Integration

Its use and operation are described in Section 8.6, “Orderly Shutdown”.

8.2 Message History

The key benefit of a messaging architecture is loose coupling where participating components do not
maintain any awareness about one another. This fact alone makes your application extremely flexible,
allowing you to change components without affecting the rest of the flow, change messaging routes,
message consuming styles (polling vs event driven), and so on. However, this unassuming style of
architecture could prove to be difficult when things go wrong. When debugging, you would probably like
to get as much information about the message as you can (its origin, channels it has traversed, etc.)

Message History is one of those patterns that helps by giving you an option to maintain some level
of awareness of a message path either for debugging purposes or to maintain an audit trail. Spring
integration provides a simple way to configure your message flows to maintain the Message History
by adding a header to the Message and updating that header every time a message passes through
a tracked component.

Message History Configuration

To enable Message History all you need is to define the nessage- hi story element in your
configuration.

<i nt: nessage- hi story/>

Now every named component (component that has an 'id' defined) will be tracked. The framework will
set the 'history' header in your Message. Its value is very simple - Li st <Pr operti es>.

<i nt:gateway id="sanpl eGat eway"
servi ce-interface="org.springframework.integration. history. sanpl e. Sanpl eGat eway"
def aul t -request - channel =" bri dgel nChannel "/ >

<int:chain id="sanpl eChai n" input-channel ="chai nChannel " out put -channel ="filter Channel ">
<i nt: header-enricher>
<i nt: header nane="baz" val ue="baz"/>
</int: header-enricher>
</int:chai n>

The above configuration will produce a very simple Message History structure:

[{nane=sanpl eGat eway, type=gateway, tinestanp=1283281668091},
{name=sanpl eChai n, type=chain, tinestanp=1283281668094}]

To get access to Message History all you need is access the MessageHistory header. For example:

Iterator<Properties> historylterator =
message. get Header s() . get (MessageHi st ory. HEADER NAME, MessageHi story. class).iterator();
assert True(historylterator. hasNext());
Properties gatewayH story = historylterator.next();
assert Equal s("sanpl eGat eway", gatewayHi story. get("nanme"));
assert True(historylterator. hasNext());
Properties chainHi story = historylterator. next();
assert Equal s("sanpl eChai n", chai nH story. get("nane"));

You might not want to track all of the components. To limit the history to certain components based
on their names, all you need is provide the t r acked- conponent s attribute and specify a comma-
delimited list of component names and/or patterns that match the components you want to track.

Spring Integration
3.0.1.RELEASE Reference Manual 133

Spring Integration

<i nt:nessage-hi story tracked-conponent s="*Cat eway, sanple*, foo"/>

In the above example, Message History will only be maintained for all of the components that end with
'‘Gateway', start with 'sample’, or match the name ‘foo’ exactly.

© Note

Remember that by definition the Message History header is immutable (you can't re-write history,
although some try). Therefore, when writing Message History values, the components are either
creating brand new Messages (when the component is an origin), or they are copying the history
from a request Message, modifying it and setting the new list on a reply Message. In either
case, the values can be appended even if the Message itself is crossing thread boundaries. That
means that the history values can greatly simplify debugging in an asynchronous message flow.

8.3 Message Store

Enterprise Integration Patterns (EIP) identifies several patterns that have the capability to buffer
messages. For example, an Aggregator buffers messages until they can be released and a
QueueChannel buffers messages until consumers explicitly receive those messages from that channel.
Because of the failures that can occur at any point within your message flow, EIP components that buffer
messages also introduce a point where messages could be lost.

To mitigate the risk of losing Messages, EIP defines the Message Store pattern which allows EIP
components to store Messages typically in some type of persistent store (e.g. RDBMS).

Spring Integration provides support for the Message Store pattern by a) defining a
org. springframework. integration. store. MessageSt ore strategy interface, b) providing
several implementations of this interface, and c¢) exposing a nessage- st ore attribute on all
components that have the capability to buffer messages so that you can inject any instance that
implements the MessagesSt or e interface.

Details on how to configure a specific Message Store implementation and/or how to inject a
MessagesSt or e implementation into a specific buffering component are described throughout the
manual (see the specific component, such as QueueChannel, Aggregator, Resequencer etc.), but here
are a couple of samples to give you an idea:

QueueChannel

<i nt:channel id="nyQueueChannel ">
<i nt:queue nessage-store="ref ToMessageStore"/>
<i nt: channel >

Aggregator
<i nt:aggregator ..nessage-store="ref ToMessageStore"/>
By default Messages are stored in-memory using

org. springframework.integration.store. Si npl eMessageSt ore, an implementation of
MessagesSt or e. That might be fine for development or simple low-volume environments where the
potential loss of non-persistent messages is not a concern. However, the typical production application
will need a more robust option, not only to mitigate the risk of message loss but also to avoid potential
out-of-memory errors. Therefore, we also provide MessageStore implementations for a variety of data-
stores. Below is a complete list of supported implementations:

Spring Integration
3.0.1.RELEASE Reference Manual 134

http://eaipatterns.com/MessageStore.html

Spring Integration

Section 17.4, “JDBC Message Store” - uses RDBMS to store Messages

Section 22.4, “Redis Message Store” - uses Redis key/value datastore to store Messages

Section 21.3, “MongoDB Message Store” - uses MongoDB document store to store Messages

Section 15.5, “Gemfire Message Store” - uses Gemfire distributed cache to store Messages

© Important

However be aware of some limitations while using persistent implementations of the
MessageSt or e.

The Message data (payload and headers) is serialized and deserialized using different
serialization strategies depending on the implementation of the MessagesSt or e. For example,
when using JdbcMessageStore, only Serializabl e data is persisted by default. In
this case non-Serializable headers are removed before serialization occurs. Also be
aware of the protocol specific headers that are injected by transport adapters (e.g.,
FTP, HTTP, JMS etc.). For example, <ht t p: i nbound- channel - adapt er/ > maps HTTP-
headers into Message Headers and one of them is an Arrayli st of non-Serializable
org. spri ngframewor k. htt p. Medi aType instances. However you are able to inject your
own implementation of the Seri al i zer and/or Deseri al i zer strategy interfaces into some
MessageSt or e implementations (such as JdbcMessageStore) to change the behaviour of
serialization and deserialization.

Special attention must be paid to the headers that represent certain types of data. For example,
if one of the headers contains an instance of some Spring Bean, upon deserialization you may
end up with a different instance of that bean, which directly affects some of the implicit headers
created by the framework (e.g., REPLY_CHANNEL or ERROR_CHANNEL). Currently they are
not serializable, but even if they were, the deserialized channel would not represent the expected
instance.

Beginning with Spring Integration version 3.0, this issue can be resolved with a header
enricher, configured to replace these headers with a name after registering the channel with the
Header Channel Regi stry.

Also when configuring a message-flow like this: gateway -> queue-channel (backed by a
persistent Message Store) -> service-activator That gateway creates a Temporary Reply
Channel, and it will be lost by the time the service-activator's poller reads from the queue. Again,
you can use the header enricher to replace the headers with a String representation.

For more information, refer to the the section called “Header Enricher”.

8.4 Metadata Store

Many external systems, services or resources aren't transactional (Twitter, RSS, file system etc.) and
there is no any ability to mark the data as read. Or there is just need to implement the Enterprise
Integration Pattern ldempotent Receiver in some integration solutions. To achieve this goal and store
some previous state of the Endpoint before the next interaction with external system, or deal with the
next Message, Spring Integration provides the Metadata Store component being an implementation of
the or g. spri ngframewor k. i nt egrati on. met adat a. Met adat aSt or e interface with a general
key-value contract.

Spring Integration
3.0.1.RELEASE Reference Manual 135

http://eaipatterns.com/IdempotentReceiver.html

Spring Integration

The Metadata Store is designed to store various types of generic meta-data (e.g., published date
of the last feed entry that has been processed) to help components such as the Feed adapter deal
with duplicates. If a component is not directly provided with a reference to a Met adat aSt or e, the
algorithm for locating a metadata store is as follows: First, look for a bean with id net adat aSt or e in
the ApplicationContext. If one is found then it will be used, otherwise it will create a new instance of
Si npl eMet adat aSt or e which is an in-memory implementation that will only persist metadata within
the lifecycle of the currently running Application Context. This means that upon restart you may end
up with duplicate entries.

If you need to persist metadata between Application Context restarts, two persistent Met adat aSt or es
are provided by the framework:

* PropertiesPersistingMetadataStore
» Section 22.5, “Redis Metadata Store”

The PropertiesPersistingMetadataStore is backed by a properties file and a
Properti esPersister.

<bean i d="net adat aSt or e"
class="org. springframework.integration.store.PropertiesPersistingMetadataStore"/>

Alternatively, you can provide your own implementation of the Met adat aSt ore interface (e.g.
JdbcMetadataStore) and configure it as a bean in the Application Context.

Idempotent Receiver

The Metadata Store is useful for implementating the EIP ldempotent Receiver pattern, when there is
need to filter an incoming Message if it has already been processed, and just discard it or perform some
other logic on discarding. The following configuration is an example of how to do this:

<int:filter input-channel ="serviceChannel"

out put - channel ="i denpot ent Ser vi ceChannel "
di scard- channel ="di scardChannel "
expressi on=" @ret adat aSt or e. get (header s. busi nessKey) == null"/>

<i nt: publ i sh-subscri be-channel id="idenpotent Servi ceChannel "/ >

<i nt : out bound- channel - adapt er channel ="i denpot ent Ser vi ceChannel "
expressi on=" @ret adat aSt or e. put (headers. busi nessKey, '')"/>
<int:service-activator input-channel="idenpotent Servi ceChannel" ref="service"/>

The val ue of the idempotent entry may be some expiration date, after which that entry should be
removed from Metadata Store by some scheduled reaper.

8.5 Control Bus

As described in (EIP), the idea behind the Control Bus is that the same messaging system can be used
for monitoring and managing the components within the framework as is used for "application-level"
messaging. In Spring Integration we build upon the adapters described above so that it's possible to
send Messages as a means of invoking exposed operations.

<int:control -bus input-channel ="operati onChannel />

Spring Integration
3.0.1.RELEASE Reference Manual 136

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/util/PropertiesPersister.html
http://eaipatterns.com/IdempotentReceiver.html

Spring Integration

The Control Bus has an input channel that can be accessed for invoking operations on the beans in
the application context. It also has all the common properties of a service activating endpoint, e.g. you
can specify an output channel if the result of the operation has a return value that you want to send
on to a downstream channel.

The Control Bus executes messages on the input channel as Spring Expression Language expressions.
It takes a message, compiles the body to an expression, adds some context, and then executes
it. The default context supports any method that has been annotated with @ManagedAttribute
or @ManagedOperation. It also supports the methods on Spring's Lifecycle interface, and it
supports methods that are used to configure several of Spring's TaskExecutor and TaskScheduler
implementations. The simplest way to ensure that your own methods are available to the Control Bus
is to use the @ManagedAttribute and/or @ManagedOperation annotations. Since those are also used
for exposing methods to a JMX MBean registry, it's a convenient by-product (often the same types of
operations you want to expose to the Control Bus would be reasonable for exposing via JMS). Resolution
of any particular instance within the application context is achieved in the typical SpEL syntax. Simply
provide the bean name with the SpEL prefix for beans (@). For example, to execute a method on a
Spring Bean a client could send a message to the operation channel as follows:

Message operation = MessageBui |l der. wi t hPayl oad(" @rySer vi ceBean. shut down()") . bui I d();
oper ati onChannel . send(operati on)

The root of the context for the expression is the Message itself, so you also have access to the 'payload'
and 'headers' as variables within your expression. This is consistent with all the other expression support
in Spring Integration endpoints.

8.6 Orderly Shutdown

As described in the section called “MBean Exporter”, the MBean exporter provides a JMX operation
stopActiveComponents, which is used to stop the application in an orderly manner. The operation has
two parameters, a boolean and a long. The boolean indicates whether attempts will be made to stop
(interrupt) active threads; in most cases this will be set to false for orderly shutdown. The long parameter
indicates how long (in milliseconds) the operation will wait to allow in-flight messages to complete. The
operation works as follows:

The first step calls bef or eShut down() on all beans that implement O der | yShut downCapabl e.
This allows such components to prepare for shutdown. Examples of components that implement this
interface, and what they do with this call include: JMS and AMQP message-driven adapters stop their
listener containers; TCP server connection factories stop accepting new connections (while keeping
existing connections open); TCP inbound endpoints drop (log) any new messages received; http
inbound endpoints return 503 - Service Unavailable for any new requests.

The second step stops any active channels, such as JMS- or AMQP-backed channels.
The third step stops all TaskSchedul er s, preventing any new scheduled operations (polling etc).

The fourth step stops all TaskExecut or s, preventing any new tasks from running.

© Note

If the shutdown is running from a Spring-managed Task Execut or , shutting down that executor
would cause all the timeout time to be consumed by this step, because the thread won't
terminate). For this reason, either use a dedicated executor (via the shutdownExecutor property
on the MBean exporter), or do not use a Spring-managed executor to invoke this operation.

Spring Integration
3.0.1.RELEASE Reference Manual 137

Spring Integration

The fifth step stops all MessageSour ces.

The sixth step waits for any remaining time left, as defined by the value of the long parameter passed
in to the operation. This is intended to allow any in-flight messages to complete their journeys. It is
therefore important to select an appropriate timeout when invoking this operation.

The seventh step calls af t er Shut down() on all OrderlyShutdownCapable components. This allows
such components to perform final shutdown tasks (closing all open sockets, for example).

© Note

If no time is left when we get to step 6, it probably means some thread is hung; in which case,
the operation attempts a forced shutdown on all schedulers and executors before exiting.

As discussed in the section called “Orderly Shutdown Managed Operation” this operation can be invoked
using JMX. If you wish to programmatically invoke the method, you will need to inject, or otherwise
get a reference to, the | nt egrati onMBeanExporter. If noid attribute is provided on the <i nt -
j mx: mbean- expor t / > definition, the bean will have a generated name. This name contains a random
component to avoid Cbj ect Nane collisions if multiple Spring Integration contexts exist in the same
JVM (MBeanServer).

For this reason, if you wish to invoke the method programmatically, it is recommended that you provide
the exporter with an i d attribute so it can easily be accessed in the application context.

Finally, the operation can be invoked using the <cont r ol - bus>; see the monitoring Spring Integration
sample application for details.

Spring Integration
3.0.1.RELEASE Reference Manual 138

https://github.com/spring-projects/spring-integration-samples/tree/master/intermediate/monitoring
https://github.com/spring-projects/spring-integration-samples/tree/master/intermediate/monitoring

Part IV. Integration Endpoints

This section covers the various Channel Adapters and Messaging Gateways provided by Spring
Integration to support Message-based communication with external systems.

Spring Integration

9. Endpoint Quick Reference Table

As discussed in the sections above, Spring Integration provides a number of endpoints used to interface
with external systems, file systems etc. The following is a summary of the various endpoints with quick
links to the appropriate chapter.

Torecap, Inbound Channel Adapters are used for one-way integration bringing data into the messagng
application. Outbound Channel Adapters are used for one-way integration to send data out of the
messaging application. Inbound Gateways are used for a bidirectional integration flow where some
other system invokes the messaging application and receives a reply. Outbound Gateways are used
for a bidirectional integration flow where the messaging application invokes some external service or
entity, expecting a result.

Table 9.1.

Module Inbound Adapter Outbound Inbound Outbound
Adapter Gateway Gateway

AMQP Section 10.2, Section 10.3, Section 10.4, Section 10.5,
“Inbound Channel “Outbound “Inbound “Outbound
Adapter” Channel Adapter” Gateway” Gateway”

Events Section 11.1, Section 11.2, N N
“Receiving Spring “Sending Spring
ApplicationEvents” ApplicationEvents”

Feed Section 12.2, N N N
“Feed Inbound
Channel Adapter”

File Section 13.2, Section 13.3, N Section 13.3,
“Reading Files” “Writing files” “Writing files”
and the section
called “Tail'ing
Files”

FTP(S) Section 14.3,“FTP Section 14.4, N Section 14.5,
Inbound Channel “FTP Outbound “FTP Outbound
Adapter” Channel Adapter” Gateway”

Gemfire Section 15.2, Section 154, N N
“Inbound Channel “Outbound
Adapter” and Channel Adapter”

Section 15.3,
“Continuous

Query Inbound
Channel Adapter”

HTTP Section 16.4, Section 16.4, Section 16.2, “Http Section 16.3,
“HTTP “HTTP Inbound Gateway” “Http Outbound
Namespace Namespace Gateway”
Support” Support”

Spring Integration
3.0.1.RELEASE Reference Manual 140

Spring Integration

Module Inbound Adapter Outbound Inbound Outbound
Adapter Gateway Gateway
JDBC Section 17.1, Section 17.2, N Section 17.3,
“Inbound Channel “Outbound “Outbound
Adapter” and the Channel Adapter” Gateway” and
section called and the section the section called
“Stored Procedure called “Stored “Stored Procedure
Inbound Channel Procedure Outbound
Adapter” Outbound Gateway”
Channel Adapter”
JMS Section 19.1, Section 19.3, Section 19.4, Section 19.5,
“Inbound Channel “Outbound “Inbound “Outbound
Adapter” and Channel Adapter” Gateway” Gateway”
Section 19.2,
“Message-Driven
Channel Adapter”
JMX the section called the section called N the section called
“Notification “Notification “Operation
Listening Channel Publishing Invoking
Adapter” and the Channel Adapter” Outbound
section called and the section Gateway”
“Attribute Polling called “Operation
Channel Adapter” Invoking Channel
and the section Adapter”
called “Tree
Polling Channel
Adapter”
JPA Section 18.4, Section 18.5, N the section called
“Inbound Channel “Outbound “Updating
Adapter” Channel Adapter” Outbound
Gateway” and
the section called
“Retrieving
Outbound
Gateway”
Mail Section 20.2, Section 20.1, N N
“Mail-Receiving “Mail-Sending
Channel Adapter” Channel Adapter”
MongoDB Section 21.4, Section 215, N N
“MongoDB “MongoDB
Inbound Channel Outbound
Adapter” Channel Adapter”
Redis the section called the section called N N
“Redis Inbound “Redis Outbound
Channel Adapter” Channel Adapter”
Spring Integration
3.0.1.RELEASE Reference Manual 141

Spring Integration

Module Inbound Adapter Outbound Inbound Outbound
Adapter Gateway Gateway
and the section and the section
called “Redis called “Redis
Queue Inbound Queue Outbound
Channel Adapter” Channel Adapter”
and Section 22.6, and Section 22.7,
“RedisStore “RedisStore
Inbound Channel Outbound
Adapter” Channel Adapter”
Resource Section 23.2, N N N
“Resource
Inbound Channel
Adapter”
RMI N N Section 24.3, Section 24.2,
“Inbound RMI” “Outbound RMI”
SFTP Section 25.5, Section 25.6, N Section 25.7,
“SFTP Inbound “SFTP Outbound “SFTP Outbound
Channel Adapter” Channel Adapter” Gateway”
Stream Section 26.2, Section 26.3, N N
“Reading from “Writing to
streams” streams”
Syslog Section 27.2, N N N
“Syslog <inbound-
channel-adapter>"
TCP Section 28.6, Section 28.6, Section 28.7, Section 28.7,
“TCP Adapters” “TCP Adapters” “TCP Gateways” “TCP Gateways”
Twitter Section 29.4, Section 295, N N
“Twitter Inbound “Twitter Outbound
Adapters” Adapter”
UDP Section 28.2, Section 28.2, N N
“UDP Adapters” “UDP Adapters”
Web Services N N Section 30.2, Section 30.1,
“Inbound Web “Outbound Web
Service Service
Gateways” Gateways”
XMPP Section 32.3, Section 32.3, N N
“XMPP “XMPP
Messages” and Messages” and
Section 32.4, Section 32.4,
“XMPP Presence” “XMPP Presence”
Spring Integration
3.0.1.RELEASE Reference Manual 142

Spring Integration

In addition, as discussed in Part lll, “Core Messaging”, endpoints are provided for interfacing with Plain
Old Java Objects (POJOs). As discussed in Section 3.3, “Channel Adapter”, the <i nt : i nbound-
channel - adapt er > allows polling a java method for data; the <i nt: outbound-channel -
adapt er > allows sending data to a voi d method, and as discussed in Section 7.2, “Messaging
Gateways”, the <i nt : gat eway> allows any Java program to invoke a messaging flow. Each of these
without requiring any source level dependencies on Spring Integration. The equivalent of an outbound
gateway in this context would be to use a Section 7.3, “Service Activator” to invoke a method that returns

an Object of some kind.

Spring Integration
3.0.1.RELEASE Reference Manual 143

Spring Integration

10. AMQP Support

10.1 Introduction

Spring Integration provides Channel Adapters for receiving and sending messages using the Advanced
Message Queuing Protocol (AMQP). The following adapters are available:

Inbound Channel Adapter

Outbound Channel Adapter

Inbound Gateway
e Outbound Gateway

Spring Integration also provides a point-to-point Message Channel as well as a publish/subscribe
Message Channel backed by AMQP Exchanges and Queues.

In order to provide AMQP support, Spring Integration relies on Spring AMQP (http:/
www.springsource.org/spring-amgp) which "applies core Spring concepts to the development of
AMQP-based messaging solutions”. Spring AMQP provides similar semantics as Spring JMS (http://
static.springsource.org/spring/docs/current/spring-framework-reference/html/jms.html).

Whereas the provided AMQP Channel Adapters are intended for unidirectional Messaging (send or
receive) only, Spring Integration also provides inbound and outbound AMQP Gateways for request/
reply operations.

@ Tip

Please familiarize yourself with the reference documentation of the Spring AMQP project as well.
It provides much more in-depth information regarding Spring's integration with AMQP in general
and RabbitMQ in particular.

You can find the documentation at: http://static.springsource.org/spring-amaqp/reference/html/

10.2 Inbound Channel Adapter

A configuration sample for an AMQP Inbound Channel Adapter is shown below.

Spring Integration
3.0.1.RELEASE Reference Manual 144

http://www.springsource.org/spring-amqp
http://www.springsource.org/spring-amqp
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/jms.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/jms.html
http://static.springsource.org/spring-amqp/reference/html/

Spring Integration

<i nt - angp: i nbound- channel - adapt er i d="i nboundAngp" O

channel ="i nboundChannel "0
queue- nanes="si . test. queue"
acknow edge- node="AUTO' [
advi ce-chai n=""0

channel -transact ed=""0
concurrent-consuners=""01
connection-factory=""0
error-channel ="" 0

expose- | i stener-channel =""0
header - mapper ="" 4

mapped- r equest - header s="" 4
mapped- r epl y- header s=""

i stener-container=""H
message- converter=""
nessage- properties-converter=""
phase=""

pref et ch- count =""

recei ve-ti nmeout ="" K
recovery-interval =""El

shut down-t i neout ="" E4

t ask- executor=""E4
transaction-attribute=""E
transacti on- manager =""E4
tx-size=""HE/ >

O

Unique ID for this adapter. Optional.

Message Channel to which converted Messages should be sent. Required.

Names of the AMQP Queues from which Messages should be consumed (comma-separated list).
Required.

Acknowledge Mode for the MessageListenerContainer. Optional (Defaults to AUTO).

Extra AOP Advice(s) to handle cross cutting behavior associated with this Inbound Channel
Adapter. Optional.

Flag to indicate that channels created by this component will be transactional. Ff true, tells the
framework to use a transactional channel and to end all operations (send or receive) with a commit
or rollback depending on the outcome, with an exception signalling a rollback. Optional (Defaults
to false).

Specify the number of concurrent consumers to create. Default is 1. Raising the number of
concurrent consumers is recommended in order to scale the consumption of messages coming in
from a queue. However, note that any ordering guarantees are lost once multiple consumers are
registered. In general, stick with 1 consumer for low-volume queues. Optional.

Bean reference to the RabbitMQ ConnectionFactory. Optional (Defaults to ‘connectionFactory").
Message Channel to which error Messages should be sent. Optional.

Shall the listener channel (com.rabbitmg.client.Channel) be exposed to a registered
ChannelAwareMessageListener. Optional (Defaults to true).

AngpHeader Mapper to use when receiving AMQP Messages. Optional. By default only
standard AMQP properties (e.g. contentType) will be copied to and from Spring Integration
MessageHeaders. Any user-defined headers within the AMQP MessageProperties will NOT be
copied to or from an AMQP Message unless explicitly identified via 'requestHeaderNames' and/
or 'replyHeaderNames' properties of this Def aul t AngpHeader Mapper . If you need to copy all
user-defined headers simply use wild-card character *'.

Spring Integration

3.0.1.RELEASE Reference Manual 145

Spring Integration

N NEN
EBE

Comma-separated list of names of AMQP Headers to be mapped from the AMQP request into
the MessageHeaders. This can only be provided if the 'header-mapper' reference is not being set
directly. The values in this list can also be simple patterns to be matched against the header names
(e.g. "*" or "foo*, bar" or "*foo").

Comma-separated list of names of MessageHeaders to be mapped into the AMQP Message
Properties of the AMQP reply message. All standard Headers (e.g., contentType) will be mapped
to AMQP Message Properties while user-defined headers will be mapped to 'headers' property
which itself is a Map. This can only be provided if the 'header-mapper’ reference is not being set
directly. The values in this list can also be simple patterns to be matched against the header names
(e.g. "*" or "foo*, bar" or "*foo").

Reference to the Si npl eMessageli st ener Cont ai ner to use for receiving AMQP Messages.
If this attribute is provided, then no other attribute related to the listener container configuration
should be provided. In other words, by setting this reference, you must take full responsibility of
the listener container configuration. The only exception is the MessageListener itself. Since that
is actually the core responsibility of this Channel Adapter implementation, the referenced listener
container must NOT already have its own MessageListener configured. Optional.

© Note

Note that when configuring an external container, you cannot use the Spring AMQP
namespace to define the container. This is because the namespace requires at least one
<l i st ener/ > element. In this environment, the listener is internal to the adapter. For this
reason, you must define the container using a normal Spring <bean/ > definition, such as:

<bean id="contai ner"

cl ass="org. spri ngframewor k. angp. rabbi t. i stener. Si npl eMessagelLi st ener Cont ai ner" >
<property nanme="connectionFactory" ref="connectionFactory" />

<property name="queueNanes" val ue="f 0o. queue" />

<property nanme="def aul t RequeueRej ect ed" val ue="fal se"/>

</ bean>

The MessageConverter to use when receiving AMQP Messages. Optional.

The MessagePropertiesConverter to use when receiving AMQP Messages. Optional.

Specify the phase in which the underlying SimpleMessageListenerContainer should be started and
stopped. The startup order proceeds from lowest to highest, and the shutdown order is the reverse
of that. By default this value is Integer. MAX_VALUE meaning that this container starts as late as
possible and stops as soon as possible. Optional.

Tells the AMQP broker how many messages to send to each consumer in a single request. Often
this can be set quite high to improve throughput. It should be greater than or equal to the transaction
size (see attribute "tx-size"). Optional (Defaults to 1).

Receive timeout in milliseconds. Optional (Defaults to 1000).

Specifies the interval between recovery attempts of the underlying
SimpleMessagelListenerContainer (in milliseconds). Optional (Defaults to 5000).

The time to wait for workers in milliseconds after the underlying SimpleMessageListenerContainer
is stopped, and before the AMQP connection is forced closed. If any workers are active when the
shutdown signal comes they will be allowed to finish processing as long as they can finish within
this timeout. Otherwise the connection is closed and messages remain unacked (if the channel is
transactional). Defaults to 5000 milliseconds. Optional (Defaults to 5000).

By default, the underlying SimpleMessageListenerContainer uses a SimpleAsyncTaskExecutor
implementation, that fires up a new Thread for each task, executing it asynchronously. By default,
the number of concurrent threads is unlimited. NOTE: This implementation does not reuse threads.

Spring Integration

3.0.1.RELEASE Reference Manual 146

Spring Integration

Consider a thread-pooling TaskExecutor implementation as an alternative. Optional (Defaults to
SimpleAsyncTaskExecutor).

By default the underlying SimpleMessageListenerContainer creates a new instance of the
DefaultTransactionAttribute (takes the EJB approach to rolling back on runtime, but not checked
exceptions. Optional (Defaults to DefaultTransactionAttribute).

Sets a Bean reference to an external PlatformTransactionManager on the underlying
SimpleMessagelListenerContainer. The transaction manager works in conjunction with the
"channel-transacted" attribute. If there is already a transaction in progress when the framework
is sending or receiving a message, and the channelTransacted flag is true, then the commit or
rollback of the messaging transaction will be deferred until the end of the current transaction. If the
channelTransacted flag is false, then no transaction semantics apply to the messaging operation
(it is auto-acked). For further information see chapter 1.9 of the Spring AMQP reference guide:
http://static.springsource.org/spring-amqp/docs/1.0.x/reference/html/#d0e525 Optional.

Tells the SimpleMessageListenerContainer how many messages to process in a single transaction
(if the channel is transactional). For best results it should be less than or equal to the set "prefetch-
count". Optional (Defaults to 1).

Important

Even though the Spring Integration JIMS and AMQP support is very similar, important differences
exist. The JMS Inbound Channel Adapter is using a JmsDestinationPollingSource under the
covers and expects a configured Poller. The AMQP Inbound Channel Adapter on the other side
uses a SimpleMessageListenerContainer and is message driven. In that regard it is more similar
to the JIMS Message Driven Channel Adapter.

10.3 Outbound Channel Adapter

A configuration sample for an AMQP Outbound Channel Adapter is shown below.

<i nt - angp: out bound- channel - adapt er i d="out boundAmgp" O

channel =" out boundChannel " O

anmgp-t enpl at e="nyAngpTenpl at e" O
exchange- name=""01

order="1"0

routing-key=""0

routi ng- key-expression=""010
confirmcorrel ation-expressi on=""0
confirm ack-channel ="" 0

confi rm nack- channel ="" [

r et ur n- channel ="" &/ >

Unique ID for this adapter. Optional.

Message Channel to which Messages should be sent in order to have them converted and
published to an AMQP Exchange. Required.

Bean Reference to the configured AMQP Template Optional (Defaults to "amgpTemplate").

The name of the AMQP Exchange to which Messages should be sent. If not provided, Messages
will be sent to the default, no-name Exchange. Optional.

The order for this consumer when multiple consumers are registered thereby enabling
load- balancing and/or failover. Optional (Defaults to Ordered.LOWEST_PRECEDENCE
[=Integer.MAX_VALUE]).

Spring Integration

3.0.1.RELEASE Reference Manual 147

Spring Integration

The fixed routing-key to use when sending Messages. By default, this will be an empty String.
Optional.

The routing-key to use when sending Messages evaluated as an expression on the message (e.g.
'‘payload.key"). By default, this will be an empty String. Optional.

An expression defining correlation data. When provided, this configures the underlying
amgp template to receive publisher confirms. Requires a RabbitTenplate and a
Cachi ngConnecti onFact ory with the publ i sher Confi rns property set to true. When a
publisher confirm is received, it is written to either the confirm-ack-channel, or the confirm-nack-
channel, depending on the confirmation type. The payload of the confirm is the correlation data as
defined by this expression and the message will have a header 'amqgp_publishConfirm' set to true
(ack) or false (nack). Examples: "headers['myCorrelationData’]", "payload". Optional.

The channel to which positive (ack) publisher confirms are sent; payload is the correlation data
defined by the confirm-correlation-expression. Optional, default=nullChannel.

The channel to which negative (nack) publisher confirms are sent; payload is the correlation data
defined by the confirm-correlation-expression. Optional, default=nullChannel.

The channel to which returned messages are sent. When provided, the underlying amqp template
is configured to return undeliverable messages to the adapter. The message will be constructed
from the data received from amqp, with the following additional headers: amqgp_returnReplyCode,
amgp_returnReplyText, amqgp_returnExchange, amqgp_returnRoutingKey. Optional.

© Important
Using a return-channel requires a Rabbit Tenpl at e with either the nandat ory
or i mredi at e properties set to t rue, and a Cachi ngConnecti onFact ory with the
publ i sher Ret ur ns property set to t r ue. When using multiple outbound endpoints with
returns, a separate Rabbi t Tenpl at e is needed for each endpoint.

10.4 Inbound Gateway

A configuration sample for an AMQP Inbound Gateway is shown below.

O

<i nt - angp: i nbound- gat eway i d="i nboundGat eway" [

request - channel =" nyRequest Channel " O
queue- nanmes="si . test. queue"

advi ce-chai n=""0

concurrent -consuners="1"0

connecti on-factory="connecti onFactory"[
repl y- channel =" myRepl yChannel " 0/ >

Unique ID for this adapter. Optional.

Message Channel to which converted Messages should be sent. Required.

Names of the AMQP Queues from which Messages should be consumed (comma-separated list).
Required.

Extra AOP Advice(s) to handle cross cutting behavior associated with this Inbound Gateway.
Optional.

Specify the number of concurrent consumers to create. Default is 1. Raising the number of
concurrent consumers is recommended in order to scale the consumption of messages coming in
from a queue. However, note that any ordering guarantees are lost once multiple consumers are
registered. In general, stick with 1 consumer for low-volume queues. Optional (Defaults to 1).
Bean reference to the RabbitMQ ConnectionFactory. Optional (Defaults to ‘connectionFactory").

Spring Integration

3.0.1.RELEASE Reference Manual 148

Spring Integration

O

Message Channel where reply Messages will be expected. Optional.

See the note in Section 10.2, “Inbound Channel Adapter” about configuring the | i st ener - cont ai ner
attribute.

10.5 Outbound Gateway

A configuration sample for an AMQP Outbound Gateway is shown below.

<i nt - angp: out bound- gat eway i d="i nboundGat eway" [

request - channel =" nyRequest Channel "
anmgp-tenpl ate=""01

exchange- name=""10

order="1"0

repl y-channel ="" 0

routing-key=""0

routi ng- key-expressi on=""0
return-channel =""0/>

Unique ID for this adapter. Optional.

Message Channel to which Messages should be sent in order to have them converted and
published to an AMQP Exchange. Required.

Bean Reference to the configured AMQP Template Optional (Defaults to "amgpTemplate").

The name of the AMQP Exchange to which Messages should be sent. If not provided, Messages
will be sent to the default, no-name Exchange. Optional.

The order for this consumer when multiple consumers are registered thereby enabling
load- balancing and/or failover. Optional (Defaults to Ordered.LOWEST_PRECEDENCE
[=Integer.MAX_VALUE]).

Message Channel to which replies should be sent after being received from an AQMP Queue and
converted. Optional.

The routing-key to use when sending Messages. By default, this will be an empty String. Optional.
The routing-key to use when sending Messages evealuated as an expression on the message
(e.g. 'payload.key"). By default, this will be an empty String. Optional.

The channel to which returned messages are sent. When provided, the underlying amqp template
is configured to return undeliverable messages to the gateway. The message will be constructed
from the data received from amqp, with the following additional headers: amqgp_returnReplyCode,
amgp_returnReplyText, amqgp_returnExchange, amqgp_returnRoutingKey. Optional.

© Important
Using a return-channel requires a Rabbit Tenpl at e with either the nmandat ory
or i mredi at e properties set to true, and a Cachi ngConnecti onFact ory with the
publ i sher Ret ur ns property set to t r ue. When using multiple outbound endpoints with
returns, a separate Rabbi t Tenpl at e is needed for each endpoint.

Note

Prior to Spring Integration 2.2, and Spring AMQP 1.1, the outbound gateway used a new,
temporary, reply queue for each request. This is still the default, but now the RabbitTemplate
can be configured with a specific queue for replies; headers are added to the outbound message
for request/reply correlation. It is important that the consuming application returns these headers

Spring Integration

3.0.1.RELEASE Reference Manual 149

Spring Integration

unchanged. The headers are spring reply correl ati on and spring_reply_to.If the
consuming application is a Spring Integration application, these headers will be managed
automatically, including the case where that application might send a request/reply to a third
application using an outbound gateway.

10.6 AMQP Backed Message Channels

There are two Message Channel implementations available. One is point-to-point, and the other
is publish/subscribe. Both of these channels provide a wide range of configuration attributes for
the underlying AmgpTemplate and SimpleMessageListenerContainer as you have seen on the
Channel Adapters and Gateways. However, the examples we'll show here are going to have minimal
configuration. Explore the XML schema to view the available attributes.

A point-to-point channel would look like this:

<i nt - angp: channel id="p2pChannel "/ >

Under the covers a Queue named "si.p2pChannel” would be declared, and this channel will send to
that Queue (technically by sending to the no-name Direct Exchange with a routing key that matches
this Queue's name). This channel will also register a consumer on that Queue. If for some reason, you
want the Queue to be "pollable” instead of message-driven, then simply provide the "message-driven”
flag with a value of false:

<i nt - angp: channel id="p2pPol | abl eChannel" nessage-driven="fal se"/>

A publish/subscribe channel would look like this:

<i nt - angp: publ i sh-subscri be- channel i d="pubSubChannel "/ >

Under the covers a Fanout Exchange named "si.fanout.pubSubChannel" would be declared, and this
channel will send to that Fanout Exchange. This channel will also declare a server-named exclusive,
autodelete, non-durable Queue and bind that to the Fanout Exchange while registering a consumer on
that Queue to receive Messages. There is no "pollable" option for a publish-subscribe-channel; it must
be message-driven.

10.7 AMQP Message Headers

The Spring Integration AMPQ Adapters will map standard AMQP properties automatically. These
properties will be copied by default to and from Spring Integration MessageHeader s using the
Def aul t AngpHeader Mapper .

Of course, you can pass in your own implementation of AMQP specific header mappers, as the adapters
have respective properties to support that.

Any user-defined headers within the AMQP MessagePr operti es will NOT be copied to or from an
AMQP Message, unless explicitly specified by the requestHeaderNames and/or replyHeaderNames
properties of the Def aul t AngypHeader Mapper .

Q@ Tip
When mapping user-defined headers, the values can also contain simple wildcard patterns (e.g.

"foo*" or "*fo0") to be matched. For example, if you need to copy all user-defined headers simply
use the wild-card character "',

Spring Integration
3.0.1.RELEASE Reference Manual 150

http://static.springsource.org/spring-integration/api/org/springframework/integration/MessageHeaders.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/amqp/support/DefaultAmqpHeaderMapper.html
http://static.springsource.org/spring-amqp/api/org/springframework/amqp/core/MessageProperties.html

Spring Integration

Class AngpHeaders identifies
Def aul t AngpHeader Mapper :

amgp_appld
amgp_clusterld
amgp_contentEncoding
amgp_contentLength
content-type
amgp_correlationid
amgp_deliveryMode
amgp_deliveryTag
amgp_expiration
amgp_messageCount
amgp_messageld
amgp_receivedExchange
amgp_receivedRoutingKey
amgp_redelivered
amgp_replyTo
amqp_timestamp
amgp_type

amgp_userld
amgp_springReplyCorrelation
amgp_springReplyToStack
amgp_publishConfirm
amgp_returnReplyCode
amqp_returnReplyText
amgp_returnExchange

amgp_returnRoutingKey

10.8 AMQP Samples

the

default

headers

that

will

be

used

by

the

To experiment with the AMQP adapters, check out the samples available in the Spring Integration
Samples Git repository at:

3.0.1.RELEASE

Spring Integration
Reference Manual

151

http://static.springsource.org/spring-integration/api/org/springframework/integration/amqp/AmqpHeaders.html

Spring Integration

 https://github.com/SpringSource/spring-integration-samples

Currently there is one sample available that demonstrates the basic functionality of the Spring Integration
AMQP Adapter using an Outbound Channel Adapter and an Inbound Channel Adapter. As AMQP Broker

implementation the sample uses RabbitMQ (http://www.rabbitmg.com/).

© Note

In order to run the example you will need a running instance of RabbitMQ. A local installation with
just the basic defaults will be sufficient. For detailed RabbitMQ installation procedures please
visit: _http://www.rabbitmg.com/install.html

Once the sample application is started, you enter some text on the command prompt and a message
containing that entered text is dispatched to the AMQP queue. In return that message is retrieved via
Spring Integration and then printed to the console.

The image belows illustrates the basic set of Spring Integration components used in this sample.

— -
D,

consoleln

_— _—
I:—JI I:—JI
@ @
toRabhit fromRabbit

The Spring Integration graph of the AMQP sample

-
iy

:a—ﬂg

consoleQut

. ::—{E

loggingChannel

3.0.1.RELEASE

Spring Integration
Reference Manual

152

https://github.com/SpringSource/spring-integration-samples
http://www.rabbitmq.com/
http://www.rabbitmq.com/install.html

Spring Integration

11. Spring ApplicationEvent Support

Spring Integration provides support for inbound and outbound Appl i cati onEvent s as defined by the
underlying Spring Framework. For more information about Spring's support for events and listeners,
refer to the Spring Reference Manual.

11.1 Receiving Spring ApplicationEvents

To receive events and send them to a channel, simply define an instance of Spring Integration's
Appl i cati onEvent Li st eni ngMessagePr oducer. This class is an implementation of Spring's
Appl i cationLi st ener interface. By default it will pass all received events as Spring Integration
Messages. To limit based on the type of event, configure the list of event types that you want to receive
with the 'eventTypes' property. If a received event has a Message instance as its 'source’, then that
will be passed as-is. Otherwise, if a SpEL-based "payloadExpression” has been provided, that will be
evaluated against the ApplicationEvent instance. If the event's source is not a Message instance and no
"payloadExpression" has been provided, then the ApplicationEvent itself will be passed as the payload.

For convenience namespace support is provided to configure an
Appl i cati onEvent Li st eni ngMessagePr oducer via the inbound-channel-adapter element.

<i nt - event: i nbound-channel - adapt er channel =" event Channel "
error-channel ="event Err or Channel "
event -t ypes="exanpl e. FooEvent, exanpl e. Bar Event"/ >

<i nt: publish-subscribe-channel id="event Channel"/>

In the above example, all Application Context events that match one of the types specified by the 'event-
types' (optional) attribute will be delivered as Spring Integration Messages to the Message Channel
named 'eventChannel'. If a downstream component throws an exception, a MessagingException
containing the failed message and exception will be sent to the channel named 'eventErrorChannel'. If
no "error-channel” is specified and the downstream channels are synchronous, the Exception will be
propagated to the caller.

11.2 Sending Spring ApplicationEvents

To send Spring Appl i cati onEvents, create an instance of the
Appl i cati onEvent Publ i shi ngMessageHandl er and register it within an endpoint.
This implementation of the MessageHandl er interface also implements Spring's
Appl i cati onEvent Publ i sher Awar e interface and thus acts as a bridge between Spring Integration
Messages and Appl i cati onEvent s.

For convenience namespace support is provided to configure an
Appl i cati onEvent Publ i shi ngMessageHandI er via the outbound-channel-adapter element.

<i nt:channel id="eventChannel"/>

<i nt - event : out bound- channel - adapt er channel =" event Channel "/ >

If you are using a PollableChannel (e.g., Queue), you can also provide poller as a sub-element of the
outbound-channel-adapter element. You can also optionally provide a task-executor reference for that
poller. The following example demonstrates both.

Spring Integration
3.0.1.RELEASE Reference Manual 153

http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#context-functionality-events

Spring Integration

<i nt:channel id="eventChannel">
<i nt:queue/ >
</int:channel >

<i nt - event : out bound- channel - adapt er channel =" event Channel ">
<int:pol |l er max-nessages-per-poll="1" task-executor="executor" fixed-rate="100"/>
</int-event: out bound- channel - adapt er >

<t ask: execut or id="executor" pool -size="5"/>

In the above example, all messages sent to the 'eventChannel' channel will be published as
ApplicationEvents to any relevant ApplicationListener instances that are registered within the same
Spring ApplicationContext. If the payload of the Message is an ApplicationEvent, it will be passed as-
is. Otherwise the Message itself will be wrapped in a MessagingEvent instance.

Spring Integration
3.0.1.RELEASE Reference Manual 154

Spring Integration

12. Feed Adapter

Spring Integration provides support for Syndication via Feed Adapters

12.1 Introduction

Web syndication is a form of publishing material such as news stories, press releases, blog posts, and
other items typically available on a website but also made available in a feed format such as RSS or
ATOM.

Spring integration provides support for Web Syndication via its 'feed' adapter and provides convenient
namespace-based configuration for it. To configure the 'feed' namespace, include the following elements
within the headers of your XML configuration file:

xm ns:int-feed="http://wwm. springfranmework. org/schema/integration/feed"
Xsi : schemaLocati on="htt p: //ww. spri ngfranework. org/ schema/ i nt egration/feed
http://ww. springframework. org/ schema/i ntegration/feed/spring-integration-feed. xsd"

12.2 Feed Inbound Channel Adapter

The only adapter that is really needed to provide support for retrieving feeds is an inbound channel
adapter. This allows you to subscribe to a particular URL. Below is an example configuration:

<i nt-feed: i nbound- channel - adapter id="feedAdapter"
channel ="f eedChannel "
url ="http://feeds. bbci.co. uk/news/rss. xm ">
<int:poller fixed-rate="10000" nax-messages-per-poll="100" />
</int-feed:inbound-channel - adapt er >

In the above configuration, we are subscribing to a URL identified by the ur | attribute.

As news items are retrieved they will be converted to Messages and sent to a
channel identified by the channel attribute. The payload of each message will be a
com sun. syndi cat i on. f eed. synd. SyndEnt r y instance. That encapsulates various data about a
news item (content, dates, authors, etc.).

You can also see that the Inbound Feed Channel Adapter is a Polling Consumer. That means
you have to provide a poller configuration. However, one important thing you must understand
with regard to Feeds is that its inner-workings are slightly different then most other poling
consumers. When an Inbound Feed adapter is started, it does the first poll and receives a
com sun. syndi cati on. f eed. synd. SyndEnt r yFeed instance. That is an object that contains
multiple SyndEnt r y objects. Each entry is stored in the local entry queue and is released based on the
value in the max- nessages- per - pol | attribute such that each Message will contain a single entry.
If during retrieval of the entries from the entry queue the queue had become empty, the adapter will
attempt to update the Feed thereby populating the queue with more entries (SyndEntry instances) if
available. Otherwise the next attempt to poll for a feed will be determined by the trigger of the poller
(e.g., every 10 seconds in the above configuration).

Duplicate Entries

Polling for a Feed might result in entries that have already been processed ("l already read that news
item, why are you showing it to me again?"). Spring Integration provides a convenient mechanism to
eliminate the need to worry about duplicate entries. Each feed entry will have a published date field.

Spring Integration
3.0.1.RELEASE Reference Manual 155

Spring Integration

Every time a new Message is generated and sent, Spring Integration will store the value of the latest
published date in an instance of the Met adat aSt or e strategy (Section 8.4, “Metadata Store”).

© Note

The key used to persist the latest published date is the value of the (required) i d attribute of the
Feed Inbound Channel Adapter component plus the f eedUr | from the adapter's configuration.

Spring Integration
3.0.1.RELEASE Reference Manual 156

Spring Integration

13. File Support

13.1 Introduction

Spring Integration's File support extends the Spring Integration Core with a dedicated vocabulary to deal
with reading, writing, and transforming files. It provides a namespace that enables elements defining
Channel Adapters dedicated to files and support for Transformers that can read file contents into strings
or byte arrays.

This section will explain the workings of Fil eReadi ngMessageSource and
Fil eWitingMessageHandl er and how to configure them as beans. Also the support for dealing with
files through file specific implementations of Tr ansf or mer will be discussed. Finally the file specific
namespace will be explained.

13.2 Reading Files

A Fi | eReadi ngMessageSour ce can be used to consume files from the filesystem. This is an
implementation of MessageSour ce that creates messages from a file system directory.

<bean i d="pol | abl eFi | eSour ce"
class="org. springframework.integration.file.Fil|eReadi ngMessageSource"
p:inputDirectory="${input.directory}"/>

To prevent creating messages for certain files, you may supply a Fi | eLi st Fi | t er. By default, an
Accept OnceFi | eLi stFil ter is used. This filter ensures files are picked up only once from the
directory.

@ Note

The Accept OnceFi | eLi st Fi | t er stores its state in memory. If you wish the state to survive a
system restart, consider using the Fi | eSyst enPer si st ent Accept OnceFil eListFilter
instead. This filter stores the accepted file names in a Met adat aSt or e strategy (Section 8.4,
“Metadata Store”). This filter matches on the filename and modified time.

<bean i d="pol | abl eFi | eSour ce"
cl ass="org. springframework.integration.file.Fil|eReadi ngMessageSource"
p:inputDirectory="${input.directory}"
p:filter-ref="custonFilterBean"/>

A common problem with reading files is that a file may be detected before it is ready. The default
Accept OnceFi | eLi st Fi | t er does not prevent this. In most cases, this can be prevented if the file-
writing process renames each file as soon as it is ready for reading. A filename-pattern or filename-
regex filter that accepts only files that are ready (e.g. based on a known suffix), composed with the
default Accept OnceFi | eLi st Fi | t er allows for this. The Conposi t eFi | eLi st Fi | t er enablesthe
composition.

Spring Integration
3.0.1.RELEASE Reference Manual 157

Spring Integration

<bean i d="pol | abl eFi | eSour ce"
cl ass="org. springframework.integration.file.Fil|eReadi ngMessageSource"
p:inputDirectory="${i nput.directory}"
p:filter-ref="conpositeFilter"/>
<bean i d="conpositeFilter"
class="org.springframework.integration.file.filters. ConpositeFilelListFilter">
<const ruct or - ar g>
<list>
<bean class="o0.s.i.file.filters. AcceptOnceFilelListFilter"/>
<bean class="o0.s.i.file.filters. RegexPatternFilelListFilter">
<constructor-arg val ue=""test.*$"/>

</ bean>
</list>
</ constructor-ar g>

</ bean>

The configuration can be simplified using the file specific namespace. To do this use the following
template.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:int="http://ww. springframework. org/schema/integration"
xmns:int-file="http://ww:.springframework. org/schema/integration/file"
xsi : schemalLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ i nt egrati on
http://ww. springframework. org/ schema/ i ntegration/spring-integration.xsd
http://ww. springfranmework. org/schema/integration/file
http://ww. springframework. org/ schema/integration/file/spring-integration-file.xsd">
</ beans>

Within this namespace you can reduce the FileReadingMessageSource and wrap it in an inbound
Channel Adapter like this:

<int-file:inbound-channel -adapter id="fileslnl"
directory="file:${input.directory}" prevent-duplicates="true"/>

<int-file:inbound-channel -adapter id="filesln2"
directory="file: ${input.directory}"
filter="custonFilterBean" />

<int-file:inbound-channel -adapter id="filesln3"
directory="file: ${i nput.directory}"
filenane-pattern="test*" />

<int-file:inbound-channel -adapter id="filesln4"
directory="file:${input.directory}"
filenane-regex="test[0-9]+\.txt" />

The first channel adapter is relying on the default filter that just prevents duplication, the second is using
a custom filter, the third is using the filename-pattern attribute to add an Ant Pat hat cher based filter,
and the fourth is using the filename-regex attribute to add a regular expression Pattern based filter
to the Fi | eReadi ngMessageSour ce. The filename-pattern and filename-regex attributes are each
mutually exclusive with the regular filter reference attribute. However, you can use the filter attribute to
reference an instance of Conposi t eFi | eLi st Fi | t er that combines any number of filters, including
one or more pattern based filters to fit your particular needs.

Spring Integration
3.0.1.RELEASE Reference Manual 158

Spring Integration

When multiple processes are reading from the same directory it can be desirable to lock files to prevent
them from being picked up concurrently. To do this you can use a Fi | eLocker . There is a java.nio
based implementation available out of the box, but it is also possible to implement your own locking
scheme. The nio locker can be injected as follows

<int-file:inbound-channel -adapter id="filesln"
directory="file:${input.directory}" prevent-duplicates="true">
<int-file:nio-Ilocker/>

</int-file:inbound-channel -adapter>

A custom locker you can configure like this:

<int-file:inbound-channel -adapter id="filesln"
directory="file:${input.directory}" prevent-duplicates="true">
<int-file:locker ref="custonlocker"/>
</int-file:inbound-channel -adapter>

© Note

When a file inbound adapter is configured with a locker, it will take the responsibility to acquire
a lock before the file is allowed to be received. It will not assume the responsibility to unlock
the file. If you have processed the file and keeping the locks hanging around you have a memory
leak. If this is a problem in your case you should call FileLocker.unlock(File file) yourself at the
appropriate time.

When filtering and locking files is not enough it might be needed to control the way files are listed entirely.
To implement this type of requirement you can use an implementation of Di r ect or yScanner . This
scanner allows you to determine entirely what files are listed each poll. This is also the interface that
Spring Integration uses internally to wire FileListFilters FileLocker to the FileReadingMessageSource. A
custom DirectoryScanner can be injected into the <int-file:inbound-channel-adapter/> on the scanner
attribute.

<int-file:inbound-channel -adapter id="filesln" directory="file:${input.directory}"
prevent - dupl i cat es="true" scanner="custonDi rectoryScanner"/>

This gives you full freedom to choose the ordering, listing and locking strategies.

© Important

It is important to understand that filters (including patterns, regex, prevent-duplicates etc) and
lockers, are actually used by the scanner. Any of these attributes set on the adapter are
subsequently injected into the scanner. For this reason, if you need to provide a custom scanner
and you have multiple file inbound adapters in the same application context, each adapter must
be provided with its own instance of the scanner, either by declaring separate beans, or declaring
scope="pr ot ot ype" on the scanner bean so that the context will create a new instance for
each use.

‘Tail'ing Files

Another popular use case is to get 'lines' from the end (or tail) of a file,
capturing new lines when they are added. Two implementations are provided; the first,
OSDel egati ngFi | eTai | i ngMessagePr oducer, uses the native tail command (on operating
systems that have one). This is likely the most efficient implementation on those platforms.
For operating systems that do not have a tail command, the second implementation

Spring Integration
3.0.1.RELEASE Reference Manual 159

Spring Integration

ApacheCommonsFi | eTai | i ngMessagePr oducer which uses the Apache conmons-io Tail er
class.

In both cases, file system events, such as files being unavailable etc, are published as
Appl i cati onEvent s using the normal Spring event publishing mechanism. Examples of such events
are:

[message=tail: cannot open /tnp/foo' for reading: No such file or directory,
file=/tnpl/foo]

[message=tail: “/tnp/foo' has becone accessible, file=/tnp/foo]

[message=tail: “/tnp/foo' has becone i naccessible: No such file or directory,
file=/tnpl/foo]

[message=tail: “/tnp/foo' has appeared; followng end of new file, file=/
t np/ f 00]

This sequence of events might occur, for example, when a file is rotated.

© Note

Not all platforms supporting at ai | command provide these status messages.
Example configurations:

<int-file:tail-inbound-channel -adapter id="native"
channel ="i nput "

t ask- execut or =" exec"

file="/tnp/foo"/>

This creates a native adapter with default '-F -n 0" options (follow the file name from the current end).

<int-file:tail-inbound-channel -adapter id="native"
channel ="i nput"

native-options="-F -n +0"

t ask- execut or =" exec"

file-del ay=10000

file="/tnp/foo"/>

This creates a native adapter with '-F -n +0' options (follow the file name, emitting all existing lines). If the
tail command fails (on some platforms, a missing file causes the t ai | to fail, even with - F specified),
the command will be retried every 10 seconds.

<int-file:tail-inbound-channel -adapter id="apache"
channel ="i nput"

t ask- execut or =" exec"

file="/tnp/bar"

del ay="2000"

end="fal se"

reopen="true"

file-del ay="10000"/ >

This creates an Apache commons-io Tai | er adapter that examines the file for new lines every 2
seconds, and checks for existence of a missing file every 10 seconds. The file will be tailed from the
beginning (end="f al se") instead of the end (which is the default). The file will be reopened for each
chunk (the default is to keep the file open).

Spring Integration
3.0.1.RELEASE Reference Manual 160

Spring Integration

© Important

Specifying the del ay, end or r eopen attributes, forces the use of the Apache commons-io
adapter and the nat i ve- opti ons attribute is not allowed.

13.3 Writing files

To write messages to the file system you can use a Fi | eW i ti ngMessageHandl er. This class can
deal with File, String, or byte array payloads.

You can configure the encoding and the charset that will be used in case of a String payload.

To make things easier, you can configure the Fi | eW i t i ngMessageHandl| er as part of an Outbound
Channel Adapter or Outbound Gateway using the provided XML namespace support.

Generating Filenames

Inits simplestform, the Fi | eW it i ngMessageHandl er only requires a destination directory for writing
the files. The name of the file to be written is determined by the handler's Fi | eNanmeGener at or .
The default implementation looks for a Message header whose key matches the constant defined as
Fi | eHeader s. FI LENANE.

Alternatively, you can specify an expression to be evaluated against the Message in order to generate
a file name, e.g.: headers['myCustomHeader'] + ".foo'". The expression must evaluate to a St ri ng. For
convenience, the Def aul t Fi | eNaneCGener at or also provides the setHeaderName method, allowing
you to explicitly specify the Message header whose value shall be used as the filename.

Once setup, the Def aul t Fi | eNameGener at or will employ the following resolution steps to determine
the filename for a given Message payload:

1. Evaluate the expression against the Message and, if the result is a non-empty St ri ng, use it as
the filename.

2. Otherwise, if the payload is aj ava. i 0. Fi | e, use the file's filename.
3. Otherwise, use the Message ID appended with “.msg” as the filename.

When using the XML namespace support, both, the File Oubound Channel Adapter and the File
Outbound Gateway support the following two mutually exclusive configuration attributes:

« fil ename- gener at or (areference to a Fi | eNaneGener at or) implementation)
e fil ename- gener at or - expr essi on (an expression evaluating to a St ri ng)

While writing files, a temporary file suffix will be used (default: “.writing”). It is appended to the filename
while the file is being written. To customize the suffix, you can set the temporary-file-suffix attribute on
both, the File Oubound Channel Adapter and the File Outbound Gateway.

© Note

When using the APPEND file mode, the temporary-file-suffix attribute is ignored, since the data
is appended to the file directly.

Spring Integration
3.0.1.RELEASE Reference Manual 161

http://static.springsource.org/spring-integration/api/org/springframework/integration/file/FileWritingMessageHandler.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/file/FileNameGenerator.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/file/DefaultFileNameGenerator.html
http://static.springsource.org/spring-integration/api/constant-values.html#org.springframework.integration.file.FileHeaders.FILENAME

Spring Integration

Specifying the Output Directory

Both, the File Oubound Channel Adapter and the File Outbound Gateway provide two configuration
attributes for specifying the output directory:

« directory

* directory-expression

© Note

The directory-expression attribute is available since Spring Integration 2.2,
Using the directory attribute

When using the directory attribute, the output directory will be set to a fixed value, that is set at
intialization time of the Fi | eWi ti ngMessageHandl er . If you don't specify this attribute, then you
must use the directory-expression attribute.

Using the directory-expression attribute

If you want to have full SpEL support you would choose the directory-expression attribute. This attribute
accepts a SpEL expression that is evaluated for each message being processed. Thus, you have full
access to a Message's payload and its headers to dynamically specify the output file directory.

The SpEL expression must resolve to eithera St ri ng ortoj ava. i o. Fi | e. Furthermore the resulting
String or Fi | e must point to a directory. If you don't specify the directory-expression attribute, then
you must set the directory attribute.

Using the auto-create-directory attribute

If the destination directory does not exists, yet, by default the respective destination directory and any
non-existing parent directories are being created automatically. You can set the auto-create-directory
attribute to false in order to prevent that. This attribute applies to both, the directory and the directory-
expression attribute.

© Note

When using the directory attribute and auto-create-directory is f al se, the following change was
made starting with Spring Integration 2.2:

Instead of checking for the existence of the destination directory at initialization time of the
adapter, this check is now performed for each message being processed.

Furthermore, if auto-create-directory is true and the directory was deleted between the
processing of messages, the directory will be re-created for each message being processed.

Dealing with Existing Destination Files

When writing files and the destination file already exists, the default behavior is to overwrite that target
file. This behavior, though, can be changed by setting the mode attribute on the respective File Outbound
components. The following options exist:

« REPLACE (Default)

* APPEND

Spring Integration
3.0.1.RELEASE Reference Manual 162

Spring Integration

* FAIL

* IGNORE

© Note

The mode attribute and the options APPEND, FAIL and IGNORE, are available since Spring
Integration 2.2.

REPLACE

If the target file already exists, it will be overwritten. If the mode attribute is not specified, then this is
the default behavior when writing files.

APPEND

This mode allows you to append Message content to the existing file instead of creating a new file
each time. Note that this attribute is mutually exclusive with temporary-file-suffix attribute since when
appending content to the existing file, the adapter no longer uses a temporary file.

FAIL

If the target file exists, a MessageHandlingException is thrown.

IGNORE

If the target file exists, the message payload is silently ignored.

© Note

When using a temporary file suffix (default: . wri t i ng), the IGNORE mode will apply if the final
file name exists, or the temporary file name exists.

File Outbound Channel Adapter

<int-file:outbound-channel -adapter id="filesQut" directory="${input.directory. property}"/>

The namespace based configuration also supports a del et e- sour ce-fi | es attribute. If settot r ue,
it will trigger the deletion of the original source files after writing to a destination. The default value for
that flag is f al se.

<int-file:outbound-channel -adapter id="filesCQut"
di rectory="${output.directory}"
del ete-source-files="true"/>

© Note

The del et e- source-fil es attribute will only have an effect if the inbound Message has a
File payload or if the Fi | eHeader s. ORI G NAL_FI LE header value contains either the source
File instance or a String representing the original file path.

Outbound Gateway

In cases where you want to continue processing messages based on the written file, you can use
the out bound- gat eway instead. It plays a very similar role as the out bound- channel - adapt er.
However, after writing the file, it will also send it to the reply channel as the payload of a Message.

Spring Integration
3.0.1.RELEASE Reference Manual 163

http://static.springsource.org/spring-integration/api/org/springframework/integration/MessageHandlingException.html

Spring Integration

<int-file:outbound-gateway id="nover" request-channel ="novel nput"
repl y- channel =" out put "
directory="${output.directory}"
nmode="REPLACE" del ete-source-files="true"/>

As mentioned earlier, you can also specify the mode attribute, which defines the behavior of how to
deal with situations where the destination file already exists. Please see the section called “Dealing with
Existing Destination Files” for further details. Generally, when using the File Outbound Gateway, the
result file is returned as the Message payload on the reply channel.

This also applies when specifying the IGNORE mode. In that case the pre-existing destination file is
returned. If the payload of the request message was a file, you still have access to that original file
through the Message Header FileHeaders.ORIGINAL FILE.

© Note

The 'outbound-gateway' works well in cases where you want to first move a file and then send it
through a processing pipeline. In such cases, you may connect the file namespace's 'inbound-
channel-adapter' element to the 'outbound-gateway' and then connect that gateway's reply-
channel to the beginning of the pipeline.

If you have more elaborate requirements or need to support additional payload types as input to be
converted to file content you could extend the FileWritingMessageHandler, but a much better option is
to rely on a Tr ansf or ner .

13.4 File Transformers

To transform data read from the file system to objects and the other way around you
need to do some work. Contrary to Fil eReadi ngMessageSource and to a lesser extent
FileWitingMessageHandl er, it is very likely that you will need your own mechanism to
get the job done. For this you can implement the Transformer interface. Or extend the
Abst ract Fi | ePayl oadTr ansf or mer for inbound messages. Some obvious implementations have
been provided.

Fi | eToByt eArrayTr ansf or ner transforms Files into byte[]s using Spring's Fi | eCopyUtil s. Itis
often better to use a sequence of transformers than to put all transformations in a single class. In that
case the File to byte[] conversion might be a logical first step.

Fil eToStri ngTransf or mer will convert Files to Strings as the name suggests. If nothing else, this
can be useful for debugging (consider using with a Wire Tap).

To configure File specific transformers you can use the appropriate elements from the file namespace.

<int-file:file-to-bytes-transforner input-channel="input" output-channel ="output"
del ete-files="true"/>

<int-file:file-to-string-transformer input-channel="input" output-channel ="output"
del ete-files="true" charset="UTF-8"/>

The delete-files option signals to the transformer that it should delete the inbound File
after the transformation is complete. This is in no way a replacement for using the
Accept OnceFi l eLi stFilter when the FileReadingMessageSource is being used in a multi-
threaded environment (e.g. Spring Integration in general).

Spring Integration
3.0.1.RELEASE Reference Manual 164

http://static.springsource.org/spring-integration/api/org/springframework/integration/file/FileHeaders.html

Spring Integration

14. FTP/FTPS Adapters

Spring Integration provides support for file transfer operations via FTP and FTPS.

14.1 Introduction

The File Transfer Protocol (FTP) is a simple network protocol which allows you to transfer files between
two computers on the Internet.

There are two actors when it comes to FTP communication: client and server. To transfer files with FTP/
FTPS, you use a client which initiates a connection to a remote computer that is running an FTP server.
After the connection is established, the client can choose to send and/or receive copies of files.

Spring Integration supports sending and receiving files over FTP/FTPS by providing three client side
endpoints: Inbound Channel Adapter, Outbound Channel Adapter, and Outbound Gateway. It also
provides convenient namespace-based configuration options for defining these client components.

To use the FTP namespace, add the following to the header of your XML file:

xm ns:int-ftp="http://ww. springfranmework. org/schema/integration/ftp"
Xxsi : schemaLocati on="htt p://ww. spri ngfranework. org/ schema/i ntegration/ftp
http://ww. springframework. org/ schema/integration/ftp/spring-integration-ftp.xsd"

14.2 FTP Session Factory

© Important
Starting with version 3.0, sessions are no longer cached by default. See Section 14.6, “FTP
Session Caching”.

Before configuring FTP adapters you must configure an FTP Session Factory. You can configure
the FTP Session Factory with a regular bean definition where the implementation class is
org.springframework.integration.ftp.session. Defaul t Ft pSessi onFact ory: Below is
a basic configuration:

<bean i d="ftpCientFactory"
cl ass="org. springframework.integration.ftp.session. Defaul tFtpSessi onFactory">
<property nane="host" val ue="| ocal host"/>
<property nanme="port" val ue="22"/>
<property nane="user nanme" val ue="kermt"/>
<property nane="password" val ue="frog"/>

<property name="cl i ent Mode" val ue="0"/>
<property name="fil eType" val ue="2"/>
<property nane="bufferSi ze" val ue="100000"/>

</ bean>

For FTPS connections all you need to do is use
org. springframework. integration.ftp.session. DefaultFtpsSessionFact ory instead.
Below is the complete configuration sample:

Spring Integration
3.0.1.RELEASE Reference Manual 165

Spring Integration

<bean id="ftpCientFactory"
cl ass="org. springframework.integration.ftp.client.DefaultFtpsCientFactory">
<property nane="host" val ue="1|ocal host"/>
<property nanme="port" val ue="22"/>
<property nanme="user nane" val ue="ol eg"/>
<property nane="password" val ue="password"/>
<property nanme="client Mode" val ue="1"/>
<property name="fil eType" val ue="2"/>
<property nane="useC i ent Mode" val ue="true"/>
<property name="ci pher Suites" value="a,b.c"/>
<property nane="keyManager" ref="keyManager"/>
<property nanme="protocol" val ue="SSL"/>
<property nanme="trustManager" ref="trustManager"/>
<property nanme="prot" val ue="P"'/>
<property nane="needd i ent Auth" val ue="true"/>
<property nane="aut hVal ue" val ue="ol eg"/ >
<property nane="sessi onCreation" val ue="true"/>
<property nanme="protocol s" val ue="SSL, TLS"/>
<property name="inplicit" value="true"/>

</ bean>

Every time an adapter requests a session object from its Sessi onFact ory the session is returned
from a session pool maintained by a caching wrapper around the factory. A Session in the session pool
might go stale (if it has been disconnected by the server due to inactivity) so the Sessi onFact or y will
perform validation to make sure that it never returns a stale session to the adapter. If a stale session
was encountered, it will be removed from the pool, and a new one will be created.

© Note

If you experience connectivity problems and would like to trace Session creation as well as
see which Sessions are polled you may enable it by setting the logger to TRACE level (e.g.,
log4j.category.org.springframework.integration.file=TRACE)

Now all you need to do is inject these session factories into your adapters. Obviously the protocol (FTP
or FTPS) that an adapter will use depends on the type of session factory that has been injected into
the adapter.

@ Note

A more practical way to provide values for FTP/FTPS Session Factories is by using
Spring's property placeholder support (See: http://static.springsource.org/spring/docs/3.0.x/
spring-framework-reference/html/beans.html#beans-factory-placeholderconfigurer).

Advanced Configuration

Def aul t Ft pSessi onFact ory provides an abstraction over the underlying client API which, since
Spring Integration 2.0, is Apache Commons Net. This spares you from the low level configuration
details of the or g. apache. cormons. net . ft p. FTPC i ent . However there are times when access
to lower level FTPC i ent details is necessary to achieve more advanced configuration (e.g., setting
data timeout, default timeout etc.). For that purpose, Abst r act Ft pSessi onFact or y (the base class
for all FTP Session Factories) exposes hooks, in the form of the two post-processing methods below.

Spring Integration
3.0.1.RELEASE Reference Manual 166

http://commons.apache.org/net/

Spring Integration

/**

* WIIl handle additional initialization after client.connect() nethod was invoked
* but before any action on the client has been taken
&/
protected void post Processd ientAfterConnect (T t) throws | OException {
/1 NOOP

}
/**
* WIIl handle additional initialization before client.connect() nethod was invoked
*/
protected voi d post Processd i ent Bef oreConnect (T client) throws | OException {

/1 NOOP

}

As you can see, there is no default implementation for these two methods. However, by
extending Def aul t Ft pSessi onFact or y you can override these methods to provide more advanced
configuration of the FTPC i ent . For example:

public class AdvancedFt pSessi onFactory extends Defaul t Ft pSessi onFactory {
protected void postProcessCl i ent Bef oreConnect (FTPClient ftpCient) throws | OException

ftpCdient. setDataTi neout (5000) ;
ftpCient.setDefaul tTi mout(5000);

14.3 FTP Inbound Channel Adapter

The FTP Inbound Channel Adapter is a special listener that will connect to the FTP server and will listen
for the remote directory events (e.g., new file created) at which point it will initiate a file transfer.

<i nt-ftp:inbound-channel - adapter id="ftpl nbound"
channel ="ft pChannel "
session-factory="ft pSessi onFact ory"
char set =" UTF- 8"
aut o-create-local -directory="true"
del ete-remote-files="true"
fil enanme-pattern="*.txt"
renot e-di rect ory="sone/ r enot e/ pat h"

preserve-tinestanp="true"

I ocal -fil enane- gener at or - expr essi on="#t hi s. t oUpperCase() + '.a""

local -filter="nmyFilter"

| ocal -directory=".">

<int:poller fixed-rate="1000"/>
</int-ftp:inbound-channel - adapt er >

As you can see from the configuration above you can configure an FTP Inbound Channel Adapter via
the i nbound- channel - adapt er element while also providing values for various attributes such as
| ocal -directory, fil ename-pattern (which is based on simple pattern matching, not regular
expressions), and of course the reference to a sessi on-factory.

By default the transferred file will carry the same name as the original file. If you want to override this
behavior you can set the | ocal - fi | enane- gener at or - expr essi on attribute which allows you
to provide a SpEL Expression to generate the name of the local file. Unlike outbound gateways and
adapters where the root object of the SpEL Evaluation Context is a Message, this inbound adapter does
not yet have the Message at the time of evaluation since that's what it ultimately generates with the

Spring Integration
3.0.1.RELEASE Reference Manual 167

Spring Integration

transferred file as its payload. So, the root object of the SpEL Evaluation Context is the original name
of the remote file (String).

Starting with Spring Integration 3.0, you can specify the preserve-ti nest anp attribute (default
f al se); whent r ue, the local file's modified timestamp will be set to the value retrieved from the server;
otherwise it will be set to the current time.

Sometimes file filtering based on the simple pattern specified via fil ename- pattern attribute
might not be sufficient. If this is the case, you can use the fil enane-regex attribute to specify
a Regular Expression (e.g. fi | ename-regex=".*\.test$"). And of course if you need complete
control you can use fi |l t er attribute and provide a reference to any custom implementation of the
org.springframework.integration.file.filters.FileListFilter, a strategy interface
for filtering a list of files. This filter determines which remote files are retrieved. You can also combine a
pattern based filter with other filters, such as an Accept OnceFi | eLi st Fi | t er to avoid synchronizing
files that have previously been fetched, by using a ConpositeFil eListFilter.

The Accept OnceFi | eLi st Fi | t er stores its state in memory. If you wish the state to survive a system
restart, consider using the Ft pPer si st ent Accept OnceFi | eLi st Fi | t er instead. This filter stores
the accepted file names in an instance of the Met adat aSt or e strategy (Section 8.4, “Metadata Store”).
This filter matches on the filename and the remote modified time.

© Note

Beginning with version 3.0, you can also specify a filter used to filter the files locally, once they
have been retrieved. The default filter is an Accept OnceFi | eLi st Fi | t er which prevents
processing files with the same name multiple times in the same JVM execution; this can now
be overridden (for example with an Accept Al | Fil eLi st Filter), usingthel ocal -filter
attribute. Previously, the default Accept OnceFi | eLi st Fi | t er could not be overridden.

The Accept OnceFi | eLi st Fi | t er stores its state in memory. If you wish the state to survive a
system restart, consider using the Fi | eSyst enPer si st ent Accept OnceFil eListFilter
as a local filter instead. This filter stores the accepted file names in an instance of the
Met adat aSt or e strategy (Section 8.4, “Metadata Store”).

©® Important
This filter compares the filename and modified timestamp. If you wish to use this technique
to avoid a re-synchronized file from being processed, you should use the preserve-
ti mest anp attribute discussed above.

The 'remote-file-separator' attribute allows you to configure a file separator character to use if the default
"' is not applicable for your particular environment.

Please refer to the schema for more details on these attributes.

It is also important to understand that the FTP Inbound Channel Adapter is a Polling Consumer and
therefore you must configure a poller (either via a global default or a local sub-element). Once a file has
been transferred, a Message with a j ava. i 0. Fi | e as its payload will be generated and sent to the
channel identified by the channel attribute.

More on File Filtering and Large Files

Sometimes the file that just appeared in the monitored (remote) directory is not complete. Typically such
a file will be written with temporary extension (e.g., foo.txt.writing) and then renamed after the writing

Spring Integration
3.0.1.RELEASE Reference Manual 168

Spring Integration

process finished. As a user in most cases you are only interested in files that are complete and would
like to filter only files that are complete. To handle these scenarios you can use the filtering support
provided by the fi | ename-pattern,fil ename-regex andfilter attributes. Here is an example
that uses a custom Filter implementation.

<int-ftp:inbound-channel - adapt er
channel ="ft pChannel "
session-factory="ft pSessi onFact ory"
filter="custonFilter"
local -directory="file:/ny_transfers">
renot e-di rect ory="some/ r enot e/ pat h"
<int:poller fixed-rate="1000"/>
</int-ftp:inbound-channel - adapter>

<bean id="custonFilter" class="org.exanple.CustonFilter"/>

Poller configuration notes for the inbound FTP adapter

The job of the inbound FTP adapter consists of two tasks: 1) Communicate with a remote server in
order to transfer files from a remote directory to a local directory. 2) For each transferred file, generate a
Message with that file as a payload and send it to the channel identified by the 'channel’ attribute. That
is why they are called 'channel-adapters' rather than just 'adapters'. The main job of such an adapter
is to generate a Message to be sent to a Message Channel. Essentially, the second task mentioned
above takes precedence in such a way that *IF* your local directory already has one or more files it will
first generate Messages from those, and *ONLY* when all local files have been processed, will it initiate
the remote communication to retrieve more files.

Also, when configuring a trigger on the poller you should pay close attention to the max- nessages-
per - pol | attribute. Its default value is 1 for all SourcePol | i ngChannel Adapt er instances
(including FTP). This means that as soon as one file is processed, it will wait for the next execution
time as determined by your trigger configuration. If you happened to have one or more files sitting in the
| ocal - di rectory, it would process those files before it would initiate communication with the remote
FTP server. And, if the max- messages- per - pol | were set to 1 (default), then it would be processing
only one file at a time with intervals as defined by your trigger, essentially working as one-poll = one-file.

For typical file-transfer use cases, you most likely want the opposite behavior: to process all the files
you can for each poll and only then wait for the next poll. If that is the case, set nax- nessages- per -
pol | to -1. Then, on each poll, the adapter will attempt to generate as many Messages as it possibly
can. In other words, it will process everything in the local directory, and then it will connect to the remote
directory to transfer everything that is available there to be processed locally. Only then is the poll
operation considered complete, and the poller will wait for the next execution time.

You can alternatively set the 'max-messages-per-poll' value to a positive value indicating the upward
limit of Messages to be created from files with each poll. For example, a value of 10 means that on each
poll it will attempt to process no more than 10 files.

14.4 FTP Outbound Channel Adapter

The FTP Outbound Channel Adapter relies upon a MessageHandl er implementation that will
connect to the FTP server and initiate an FTP transfer for every file it receives in the payload of
incoming Messages. It also supports several representations of the File so you are not limited only to
java.io.File typed payloads. The FTP Outbound Channel Adapter supports the following payloads: 1)
java.io. Fil e - the actual file object; 2) byt e[] - a byte array that represents the file contents; and
3)j ava. |l ang. Stri ng - text that represents the file contents.

Spring Integration
3.0.1.RELEASE Reference Manual 169

Spring Integration

<i nt-ftp: out bound- channel - adapter id="ft pQutbound"
channel ="ft pChannel "
sessi on-factory="ft pSessi onFact ory"
char set =" UTF- 8"
aut o-create-directory="true"
renot e-di rect ory- expressi on="headers.['renmote_dir']"
tenporary-renote-directory-expression="headers.['tenp_renote_dir']"
fil enane-generator="fil eNaneGenerator"/>

As you can see from the configuration above you can configure an FTP Outbound
Channel Adapter via the outbound-channel -adapter element while also providing
values for various attributes such as filenane-generator (an implementation of
the org.springframework.integration.file.FileNaneGenerator strategy interface), a
reference to a session-factory, as well as other attributes. You can also see some
examples of *expression attributes which allow you to use SpEL to configure things like
renot e- di rect ory-expressi on,tenporary-renote-directory-expressi onandr enot e-
fil enanme- gener at or - expressi on (a SpEL alternative to f i | enane- gener at or shown above).
As with any component that allows the usage of SpEL, access to Payload and Message Headers is
available via 'payload’' and 'headers' variables. Please refer to the schema for more details on the
available attributes.

© Note

By default Spring Integration will use 0. s.i.fil e. Def aul t Fi | eNaneGener at or if none is
specified. Def aul t Fi | eNameGener at or will determine the file name based on the value of
the f i | e_name header (if it exists) in the MessageHeaders, or if the payload of the Message is
already a j ava. i 0. Fi | e, then it will use the original name of that file.

© Important
Defining certain values (e.g., remote-directory) might be platform/ftp server dependent. For
example as it was reported on this forum http://forum.springsource.org/showthread.php?
p=333478&posted=1#post333478 on some platforms you must add slash to the end of the
directory definition (e.g., remote-directory="/foo/bar/" instead of remote-directory="/foo/bar")

Avoiding Partially Written Files

One of the common problems, when dealing with file transfers, is the possibility of processing a partial
file - a file might appear in the file system before its transfer is actually complete.

To deal with this issue, Spring Integration FTP adapters use a very common algorithm where files are
transferred under a temporary name and then renamed once they are fully transferred.

By default, every file that is in the process of being transferred will appear in the file system with an
additional suffix which, by default, is . wri t i ng; this can be changed using the t enporary-fil e-
suf fi x attribute.

However, there may be situations where you don't want to use this technique (for example, if the server
does not permit renaming files). For situations like this, you can disable this feature by setting use-
tenporary-file-nane tofal se (default is t r ue). When this attribute is f al se, the file is written
with its final name and the consuming application will need some other mechanism to detect that the
file is completely uploaded before accessing it.

Spring Integration
3.0.1.RELEASE Reference Manual 170

Spring Integration

14.5 FTP Outbound Gateway

The FTP Outbound Gateway provides a limited set of commands to interact with a remote FTP/FTPS
server.

Commands supported are:

* |s (list files)

» get (retrieve file)

» mget (retrieve file(s))

* rm (remove file(s))

* mv (move/rename file)

 put (send file)

* mput (send multiple files)

Is

Is lists remote file(s) and supports the following options:
» -1 -just retrieve a list of filenames, default is to retrieve a list of Fi | el nf o objects.
e -a-include all files (including those starting with '.")

» -f-do not sort the list

» -dirs - include directories (excluded by default)

* -links - include symbolic links (excluded by default)

-R - list the remote directory recursively
In addition, filename filtering is provided, in the same manner as the i nbound- channel - adapt er.

The message payload resulting from an Is operation is a list of file names, or a list of Fi | el nf o objects.
These objects provide information such as modified time, permissions etc.

The remote directory that the Is command acted on is provided inthef i | e_r enot eDi r ect or y header.

When using the recursive option (- R), the f i | eNarre includes any subdirectory elements, representing
a relative path to the file (relative to the remote directory). If the - di r s option is included, each recursive
directory is also returned as an element in the list. In this case, it is recommended that the - 1 is not
used because you would not be able to determine files Vs. directories, which is achievable using the
Fi | el nf o objects.

get
get retrieves a remote file and supports the following option:
e -P - preserve the timestamp of the remote file

The message payload resulting from a get operation is a Fi | e object representing the retrieved file.

Spring Integration
3.0.1.RELEASE Reference Manual 171

Spring Integration

The remote directory is provided inthe fi | e_r enot eDi r ect or y header, and the filename is provided
inthefil e_renoteFil e header.

mget

mget retrieves multiple remote files based on a pattern and supports the following option:
» -P - preserve the timestamps of the remote files

» -x - Throw an exception if no files match the pattern (otherwise an empty list is returned)

The message payload resulting from an mget operation is a Li st <Fi | e> object - a List of File objects,
each representing a retrieved file.

The remote directory is provided in the fil e_renot eDi rect ory header, and the pattern for the
filenames is provided inthe fi | e_r enot eFi | e header.

© Notes for when using recursion (- R)

The pattern is ignored, and * is assumed. By default, the entire remote tree is retrieved.
However, files in the tree can be filtered, by providing a Fi | eLi st Fi | t er; directories in
the tree can also be filtered this way. A Fil eLi stFilter can be provided by reference
or by filenanme-pattern or fil enane-regex attributes. For example, fil enamne-
regex="(subDir|.*1.txt)" will retrieve all files ending with 1. t xt in the remote directory
and the subdirectory subDir. If a subdirectory is filtered, no additional traversal of that
subdirectory is performed.

The - di r s option is not allowed (the recursive mget uses the recursive | s to obtain the directory
tree and the directories themselves cannot be included in the list).

Typically, you would use the #renoteDirectory variable in the | ocal -directory-
expr essi on so that the remote directory structure is retained locally.

put

put sends a file to the remote server; the payload of the message canbe aj ava.io. Fil e,abyte[]
ora String. Arenote-fil enanme-generator (or expression) is used to name the remote file.
Other available attributes include r enot e- di rect ory, t enpor ar y- r enot e- di r ect ory (and their
*- expr essi on) equivalents, use-t enporary-fil e- nanme, and aut o- cr eat e- di r ect ory. Refer
to the schema documentation for more information.

The message payload resulting from a put operation is a St r i ng representing the full path of the file
on the server after transfer.

mput

mput sends multiple files to the server and supports the following option:

* -R - Recursive - send all files (possibly filtered) in the directory and subdirectories
The message payload must be aj ava. i 0. Fi | e representing a local directory.

The same attributes as the put command are supported. In addition, files in the local directory can be
filtered with one of nput - patt ern, nmput -regex or nmput - fi | t er. The filter works with recursion,
as long as the subdirectories themselves pass the filter. Subdirectories that do not pass the filter are
not recursed.

Spring Integration
3.0.1.RELEASE Reference Manual 172

Spring Integration

The message payload resulting from an mget operation is a Li st <St ri ng> object - a List of remote
file paths resulting from the transfer.

rm
The rm command has no options.

The message payload resulting from an rm operation is Boolean. TRUE if the remove was successful,
Boolean.FALSE otherwise. The remote directory is provided in the fi | e_r enot eDi r ect or y header,
and the filename is provided inthe fi | e_r enot eFi | e header.

mv
The mv command has no options.

The expression attribute defines the "from" path and the rename-expression attribute defines the "to"
path. By default, the rename-expression is header s[' fi | e_renanmeTo'] . This expression must not
evaluate to null, or an empty St ri ng. If necessary, any remote directories needed will be created.
The payload of the result message is Bool ean. TRUE. The original remote directory is provided in the
file_renoteDirectory header, and the filename is provided in the fi |l e_renot eFi | e header.
The new path isinthefil e_r enanmeTo header.

Additional Information

The get and mget commands support the local-filename-generator-expression attribute. It defines
a SpEL expression to generate the name of local file(s) during the transfer. The root object of
the evaluation context is the request Message but, in addition, the r enot eFi | eNane variable is
also available, which is particularly useful for mget, for example: | ocal - fi | enanme- gener at or -
expr essi on="#r enot eFi | eNane. t oUpper Case() + headers. foo0".

The get and mget commands support the local-directory-expression attribute. It defines a SpEL
expression to generate the name of local directory(ies) during the transfer. The root object of the
evaluation context is the request Message but, in addition, the r enot eDi r ect ory variable is also
available, which is particularly useful for mget, for example: | ocal - di r ect ory- expr essi on=""/
tnp/local/' + #renmoteDirectory.toUpperCase() + headers.foo0". This attribute is
mutually exclusive with local-directory attribute.

For all commands, the PATH that the command acts on is provided by the 'expression' property of
the gateway. For the mget command, the expression might evaluate to "', meaning retrieve all files,
or 'somedirectory/* etc.

Here is an example of a gateway configured for an Is command...

<i nt-ftp: out bound- gat eway i d="gat enwayl"
sessi on-factory="ft pSessi onFact ory"
request - channel ="i nbound1"
command="1s"
command- opt i ons="-1"
expressi on="payl oad"
repl y-channel ="toSplitter"/>

The payload of the message sent to the toSplitter channel is a list of String objects containing the
filename of each file. If the comrand- opt i ons was omitted, it would be a list of Fi | el nf o objects.
Options are provided space-delimited, e.g. conmand-opti ons="-1 -dirs -1inks".

Spring Integration
3.0.1.RELEASE Reference Manual 173

Spring Integration

14.6 FTP Session Caching

© Important
Starting with Spring Integration version 3.0, sessions are no longer cached by default;
the cache-sessi ons attribute is no longer supported on endpoints. You must use a
Cachi ngSessi onFact ory (see below) if you wish to cache sessions.

In versions prior to 3.0, the sessions were cached automatically by default. A cache-sessi ons
attribute was available for disabling the auto caching, but that solution did not provide a way to
configure other session caching attributes. For example, you could not limit on the number of sessions
created. To support that requirement and other configuration options, a Cachi ngSessi onFact ory
was provided. It provides sessi onCacheSi ze and sessi onWi t Ti meout properties. As its name
suggests, the sessi onCacheSi ze property controls how many active sessions the factory will maintain
in its cache (the DEFAULT is unbounded). If the sessi onCacheSi ze threshold has been reached,
any attempt to acquire another session will block until either one of the cached sessions becomes
available or until the wait time for a Session expires (the DEFAULT wait time is Integer. MAX_VALUE).
The sessi onVi t Ti meout property enables configuration of that value.

If you want your Sessions to be cached, simply configure your default Session Factory as described
above and then wrap it in an instance of Cachi ngSessi onFact ory where you may provide those
additional properties.

<bean i d="ftpSessionFactory" class="0.s.i.ftp.session.DefaultFtpSessionFactory">
<property nane="host" val ue="| ocal host"/>
</ bean>

<bean i d="cachi ngSessi onFactory" class="0.s.i.file.renote.session. Cachi ngSessi onFactory" >
<constructor-arg ref="ftpSessi onFactory"/>
<constructor-arg val ue="10"/>
<property nane="sessi onWi t Ti meout" val ue="1000"/>

</ bean>

In the above example you see a Cachi ngSessi onFact ory created with the sessi onCacheSi ze
set to 10 and the sessi onWai t Ti neout set to 1 second (its value is in millliseconds).

Starting with Spring Integration version 3.0, the Cachi ngConnecti onFactory provides a
reset Cache() method. When invoked, all idle sessions are immediately closed and in-use sessions
are closed when they are returned to the cache. New requests for sessions will establish new sessions
as necessary.

14.7 RemoteFileTemplate

Starting with Spring Integration version 3.0 a new abstraction is provided over the Ft pSessi on object.
The template provides methods to send, retrieve (as an | nput St r eam), remove, and rename files.
In addition an execut e method is provided allowing the caller to execute multiple operations on the
session. In all cases, the template takes care of reliably closing the session. For more information, refer
to the javadocs for Renot eFi | eTenpl at e.

Spring Integration
3.0.1.RELEASE Reference Manual 174

Spring Integration

15. GemFire Support

Spring Integration provides support for VMWare vFabric GemFire

15.1 Introduction

VMWare vFabric GemFire (GemkFire) is a distributed data management platform providing a key-
value data grid along with advanced distributed system features such as event processing, continuous
guerying, and remote function execution. This guide assumes some familiarity with GemFire and its API.

Spring integration provides support for GemFire by providing inbound adapters for entry and
continuous query events, an outbound adapter to write entries to the cache, and MessageStore
and MessageGr oupSt or e implementations. Spring integration leverages the Spring Gemfire project,
providing a thin wrapper over its components.

To configure the ‘int-gfe' namespace, include the following elements within the headers of your XML
configuration file:

xm ns:int-gfe="http://ww. springfranmework. org/schema/integration/genfire"
Xsi : schemaLocati on="htt p://ww. spri ngfranework. org/ schema/i ntegration/genfire
http://ww. springframework. org/ schema/integration/genfire/spring-integration-genfire.xsd"

15.2 Inbound Channel Adapter

The inbound-channel-adapter produces messages on a channel triggered by a GemFire Ent r yEvent .
GemFire generates events whenever an entry is CREATED, UPDATED, DESTROYED, or
INVALIDATED in the associated region. The inbound channel adapter allows you to filter on a subset
of these events. For example, you may want to only produce messages in response to an entry being
CREATED. In addition, the inbound channel adapter can evaluate a SpEL expression if, for example,
you want your message payload to contain an event property such as the new entry value.

<gf e: cache/ >

<gfe:replicated-region id="regi on"/>

<i nt - gf e: i nbound- channel - adapt er i d="i nput Channel " regi on="regi on"

cache- event s=" CREATED"' expressi on="newal ue"/ >

In the above configuration, we are creating a GemFire Cache and Regi on using Spring GemFire's
'gfe’ namespace. The inbound-channel-adapter requires a reference to the GemFire region for which
the adapter will be listening for events. Optional attributes include cache- event s which can contain
a comma separated list of event types for which a message will be produced on the input channel. By
default CREATED and UPDATED are enabled. Note that this adapter conforms to Spring integration
conventions. If no channel attribute is provided, the channel will be created from the i d attribute. This
adapter also supports an er r or - channel . If expr essi on is not provided the message payload will
be a GemFire Ent r yEvent

15.3 Continuous Query Inbound Channel Adapter

The cg-inbound-channel-adapter produces messages a channel triggered by a GemFire continuous
query or CgEvent event. Spring GemFire introduced continuous query support in release 1.1, including
aConti nuousQuer yLi st ener Cont ai ner which provides a nice abstraction over the GemFire native
API. This adapter requires a reference to a ContinuousQueryListenerContainer, and creates a listener

Spring Integration
3.0.1.RELEASE Reference Manual 175

http://www.vmware.com/support/pubs/vfabric-gemfire.html
http://www.vmware.com/support/developer/vfabric-gemfire/662-api/index.html
http://www.springsource.org/spring-gemfire

Spring Integration

for a given quer y and executes the query. The continuous query acts as an event source that will fire
whenever its result set changes state.

© Note

GemFire queries are written in OQL and are scoped to the entire cache (not just one region).
Additionally, continuous queries require a remote (i.e., running in a separate process or
remote host) cache server. Please consult the GemFire documentation for more information on
implementing continuous queries.

<gfe:client-cache id="client-cache" pool-nanme="client-pool"/>

<gf e: pool id="client-pool" subscription-enabl ed="true" >
<I--configure server or locator here required to address the cache server -->
</ gf e: pool >

<gfe:client-region id="test" cache-ref="client-cache" pool-nane="client-pool"/>

<gfe:cqg-listener-container id="queryListenerContainer" cache="client-cache"
pool - nane="cl i ent - pool "/ >

<i nt-gf e: cqg-i nbound- channel - adapt er i d="i nput Channel "
cqg-listener-container="queryLi st ener Cont ai ner"
query="select * from/test"/>

In the above configuration, we are creating a GemFire client cache (recall a remote cache server is
required for this implementation and its address is configured as a sub-element of the pool), a client
region and a Cont i nuousQuer yLi st ener Cont ai ner using Spring GemFire. The continuous query
inbound channel adapter requires a cq- | i st ener - cont ai ner attribute which contains a reference
to the Conti nuousQueryLi st ener Cont ai ner. Optionally, it accepts an expr essi on attribute
which uses SpEL to transform the CgEvent or extract an individual property as needed. The cg-
inbound-channel-adapter provides a quer y- event s attribute, containing a comma separated list of
event types for which a message will be produced on the input channel. Available event types are
CREATED, UPDATED, DESTROYED, REGION_DESTROYED, REGION_INVALIDATED. CREATED
and UPDATED are enabled by default. Additional optional attributes include, query- name which
provides an optional query name, and expr essi on which works as described in the above section, and
dur abl e - a boolean value indicating if the query is durable (false by default). Note that this adapter
conforms to Spring integration conventions. If no channel attribute is provided, the channel will be
created from the i d attribute. This adapter also supports an er r or - channel

15.4 Outbound Channel Adapter

The outbound-channel-adapter writes cache entries mapped from the message payload. In its simplest
form, it expects a payload of type j ava. uti | . Map and puts the map entries into its configured region.

<i nt - gf e: out bound- channel - adapt er i d="cacheChannel" regi on="regi on"/>

Given the above configuration, an exception will be thrown if the payload is not a Map. Additionally, the
outbound channel adapter can be configured to create a map of cache entries using SpEL of course.

<i nt - gf e: out bound- channel - adapt er i d="cacheChannel" regi on="regi on">
<int-gfe:cache-entries>
<entry key="payl oad.t oUpper Case()" val ue="payl oad. t oLower Case()"/>
<entry key="'foo'" value=""bar"'"/>
</int-gfe:cache-entries>
</'i nt - gf e: out bound- channel - adapt er >

Spring Integration
3.0.1.RELEASE Reference Manual 176

http://www.gemstone.com/docs/6.6.RC/product/docs/html/user_guide/UserGuide_GemFire.html#Continuous%20Querying

Spring Integration

In the above configuration, the inner element cache- ent ri es is semantically equivalent to Spring
'map’ element. The adapter interprets the key and val ue attributes as SpEL expressions with the
message as the evaluation context. Note that this contain arbitrary cache entries (not only those
derived from the message) and that literal values must be enclosed in single quotes. In the above
example, if the message sent to cacheChannel has a String payload with a value "Hello", two entries
[HELLG hel | o, foo: bar] will be written (created or updated) in the cache region. This adapter also
supports the or der attribute which may be useful if it is bound to a PublishSubscribeChannel.

15.5 Gemfire Message Store

As described in EIP, a Message Store allows you to persist Messages. This can be very useful
when dealing with components that have a capability to buffer messages (QueueChannel, Aggregator,
Resequencer, etc.) if reliability is a concern. In Spring Integration, the MessageStore strategy also
provides the foundation for the ClaimCheck pattern, which is described in EIP as well.

Spring Integration's Gemfire module provides the Genf i r eMessageSt or e which is an implementation
of both the the MessageSt or e strategy (mainly used by the QueueChannel and ClaimCheck patterns)
and the MessageG oupSt or e strategy (mainly used by the Aggregator and Resequencer patterns).

<bean i d="genfireMessageStore" class="0.s.i.genfire.store. GenfireMessageStore">
<constructor-arg ref="myCache"/>
</ bean>

<bean i d="nyCache" class="org. springframework. data. genfire. CacheFact oryBean"/>
<i nt:channel id="somePersi stentQueueChannel ">
<i nt:queue nessage-store="genfireMssageStore"/>

<i nt: channel >

<i nt:aggregator input-channel ="input Channel" out put-channel =" out put Channel "
message- st ore="genfi reMessageSt ore"/ >

Above is a sample Genf i r eMessagesSt or e configuration that shows its usage by a QueueChannel
and an Aggregator. As you can see it is a normal Spring bean configuration. The simplest configuration
requires a reference to a Genti r eCache (created by CacheFact or yBean) as a constructor argument.
If the cache is standalone, i.e., embedded in the same JVM, the MessageStore will create a
message store region named "messageStoreRegion". If your application requires customization of the
messageStore region, for example, multiple Gemfire message stores each with its own region, you can
configure a region for each message store instance and use the Regi on as the constructor argument:

<bean id="genfireMessageStore" class="0.s.i.genfire.store. GenfireMessageStore">
<constructor-arg ref="myRegi on"/>
</ bean>

<gf e: cache/ >

<gfe:replicated-region i d="nmyRegi on"/>

In the above examle, the cache and region are configured using the spring-gemfire namespace (not to
be confused with the spring-integration-gemfire namespace). Often it is desirable for the message store
to be maintained in one or more remote cache servers in a client-server configuration (See the GemFire
product documentation for more details). In this case, you configure a client cache, client region, and
client pool and inject the region into the MessageStore. Here is an example:

Spring Integration
3.0.1.RELEASE Reference Manual 177

http://www.eaipatterns.com/MessageStore.html
http://www.eaipatterns.com/StoreInLibrary.html
http://www.vmware.com/support/pubs/vfabric-gemfire.html
http://www.vmware.com/support/pubs/vfabric-gemfire.html

Spring Integration

<bean i d="genfireMessageSt ore"
cl ass="org. springframework.integration.genfire.store. GenfireMessageStore">
<constructor-arg ref="nmyRegion"/>

</ bean>

<gfe:client-cachel/>
<gfe:client-region id="nyRegi on" shortcut="PROXY" pool - nane="nessageSt or ePool "/ >
<gf e: pool i d="nmessageSt or ePool ">

<gfe: server host="|ocal host" port="40404" />
</ gf e: pool >

Note the pool element is configured with the address of a cache server (a locator may be substituted
here). The region is configured as a 'PROXY" so that no data will be stored locally. The region's id
corresponds to a region with the same name configured in the cache server.

Spring Integration
3.0.1.RELEASE Reference Manual 178

Spring Integration

16. HTTP Support

16.1 Introduction

The HTTP support allows for the execution of HTTP requests and the processing of inbound HTTP
requests. Because interaction over HTTP is always synchronous, even if all that is returned is a 200
status code, the HTTP support consists of two gateway implementations: Ht t pl nboundEndpoi nt and
Ht t pRequest Execut i ngMessageHand| er .

16.2 Http Inbound Gateway

To receive messages over HTTP, you need to use an HTTP Inbound Channel Adapter or Gateway.
To support the HTTP Inbound Adapters, they need to be deployed within a servlet container such as
Apache Tomcat or Jetty. The easiest way to do this is to use Spring's Ht t pRequest Handl er Ser vl et ,
by providing the following servlet definition in the web.xml file:

<servl et >

<ser vl et - nane>i nboundGat eway</ ser vl et - nane>

<servl et-cl ass>o0.s.web. context.support. Htt pRequest Handl er Ser vl et </ servl et -cl ass>
</ servl et >

Notice that the servlet name matches the bean name. For more information on using the
Ht t pRequest Handl er Ser vl et , see chapter "Remoting and web services using Spring", which is
part of the Spring Framework Reference documentation.

If you are running within a Spring MVC application, then the aforementioned explicit servlet definition is
not necessary. In that case, the bean name for your gateway can be matched against the URL path just
like a Spring MVC Controller bean. For more information, please see the chapter "Web MVC framework",
which is part of the Spring Framework Reference documentation.

@ Tip
For a sample application and the corresponding configuration, please see the Spring Integration

Samples repository. It contains the Http Sample application demonstrating Spring Integration's
HTTP support.

Below is an example bean definition for a simple HTTP inbound endpoint.

<bean i d="htt pl nbound"
cl ass="org. springframework.integration.http.inbound. Ht t pRequest Handl i ngMessagi ngGat eway" >
<property nane="request Channel " ref="httpRequest Channel " />
<property nane="repl yChannel " ref="httpRepl yChannel" />

</ bean>

The HttpRequest Handl i ngMessagi ngGat eway accepts a list of Htt pMessageConverter
instances or else relies on a default list. The converters allow customization of the mapping from
Ht t pSer vl et Request to Message. The default converters encapsulate simple strategies, which for
example will create a String message for a POST request where the content type starts with "text", see
the Javadoc for full details. An additional flag (mer geW t hDef aul t Convert er s) can be set along with
the list of custom Ht t pMessageConvert er to add the default converters after the custom converters.
By default this flag is set to false, meaning that the custom converters replace the default list.

Starting with Spring Integration 2.0, MultiPart File support is implemented. If the request has been
wrapped as a MultipartHttpServletRequest, when using the default converters, that request will be

Spring Integration
3.0.1.RELEASE Reference Manual 179

http://tomcat.apache.org/
http://www.eclipse.org/jetty/
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/web/context/support/HttpRequestHandlerServlet.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/remoting.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html
https://github.com/SpringSource/spring-integration-samples
https://github.com/SpringSource/spring-integration-samples
https://github.com/SpringSource/spring-integration-samples/tree/master/basic/http

Spring Integration

converted to a Message payload that is a MultiValueMap containing values that may be byte arrays,
Strings, or instances of Spring's Mul t i part Fi | e depending on the content type of the individual parts.

© Note

The HTTP inbound Endpoint will locate a MultipartResolver in the context if one exists with the
bean name "multipartResolver” (the same name expected by Spring's DispatcherServlet). If it
does in fact locate that bean, then the support for MultipartFiles will be enabled on the inbound
request mapper. Otherwise, it will fail when trying to map a multipart-file request to a Spring
Integration Message. For more on Spring's support for MultipartResolvers, refer to the Spring
Reference Manual.

In sending a response to the client there are a number of ways to customize the behavior of the gateway.
By default the gateway will simply acknowledge that the request was received by sending a 200 status
code back. It is possible to customize this response by providing a 'viewName' to be resolved by the
Spring MVC Vi ewResol ver . In the case that the gateway should expect a reply to the Message then
setting the expectReply flag (constructor argument) will cause the gateway to wait for a reply Message
before creating an HTTP response. Below is an example of a gateway configured to serve as a Spring
MVC Controller with a view name. Because of the constructor arg value of TRUE, it wait for a reply.
This also shows how to customize the HTTP methods accepted by the gateway, which are POST and
GET by default.

<bean i d="htt pl nbound"
class="org. springframework.integration. http.inbound. H t pRequest Handl i ngControl | er">
<constructor-arg value="true" /> <!-- indicates that a reply is expected -->
<property nane="request Channel " ref="httpRequest Channel" />
<property nane="replyChannel" ref="httpRepl yChannel" />
<property nanme="vi ewNane" val ue="jsonView' />
<property nane="supportedMet hodNanes" >
<list>
<val ue>GET</ val ue>
<val ue>DELETE</ val ue>
</list>
</ property>
</ bean>

The reply message will be available in the Model map. The key that is used for that map entry by default
is 'reply’, but this can be overridden by setting the 'replyKey' property on the endpoint's configuration.

16.3 Http Outbound Gateway

To configure the Ht t pRequest Execut i ngMessageHandl er write a bean definition like this:

<bean i d="htt pQut bound"
cl ass="org. springframework.integration. http.outbound. Ht t pRequest Execut i ngMessageHandl| er " >
<constructor-arg val ue="http://Il ocal host: 8080/ exanpl e" />
<property nane="out put Channel " ref="responseChannel" />

</ bean>

This bean definition will execute HTTP requests by delegating to a Rest Tenpl at e. That template in
turn delegates to a list of HttpMessageConverters to generate the HTTP request body from the Message
payload. You can configure those converters as well as the ClientHttpRequestFactory instance to use:

Spring Integration
3.0.1.RELEASE Reference Manual 180

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-multipart
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-multipart

Spring Integration

<bean i d="htt pQut bound"
cl ass="org. springframework.integration. http.outbound. Ht t pRequest Execut i ngMessageHand| er " >
<constructor-arg value="http://|ocal host: 8080/ exanpl e" />
<property nane="out put Channel " ref="responseChannel" />
<property nanme="nmessageConverters" ref="messageConverterlList" />
<property nane="request Factory" ref="custonRequestFactory" />
</ bean>

By default the HTTP request will be generated using an instance of
Si npl edl i ent Ht t pRequest Factory which uses the JDK HttpURLConnection. Use
of the Apache Commons HTTP Client is also supported through the provided
ConmonsC i ent Ht t pRequest Fact or y which can be injected as shown above.

© Note

In the case of the Outbound Gateway, the reply message produced by the gateway will contain
all Message Headers present in the request message.

Cookies

Basic cookie support is provided by the transfer-cookies attribute on the outbound gateway. When set
to true (default is false), a Set-Cookie header received from the server in a response will be converted to
Cookie in the reply message. This header will then be used on subsequent sends. This enables simple
stateful interactions, such as...

...->logonGateway->...->doWorkGateway->...->logoffGateway->...

If transfer-cookies is false, any Set-Cookie header received will remain as Set-Cookie in the reply
message, and will be dropped on subsequent sends.

© Note: Empty Repsonse Bodies

HTTP is a request/response protocol. However the response may not have a body, just headers.
In this case, the Htt pRequest Execut i ngMessageHandl er produces a reply Message
with the payload being an org. spri ngfranmework. http. Htt pEntity, regardless of any
provided expect ed- r esponse-t ype. According to the HTTP RFC Status Code Definitions,
there are many statuses which identify that a response MUST NOT contain a message-body (e.g.
204 No Content). There are also cases where calls to the same URL might, or might not, return a
response body; for example, the first request to an HTTP resource returns content, but the second
does not (e.g. 304 Not Modified). In all cases, however, the ht t p_st at usCode message header
is populated. This can be used in some routing logic after the Http Outbound Gateway. You could
also use a <payl oad-t ype- r out er/ > to route messages with an Ht t pEnt i t y to a different
flow than that used for responses with a body.

16.4 HTTP Namespace Support

Spring Integration provides an http namespace and the corresponding schema definition. To include it
in your configuration, simply provide the following namespace declaration in your application context
configuration file:

Spring Integration
3.0.1.RELEASE Reference Manual 181

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Spring Integration

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns:int="http://ww.springframework. org/schena/integration"
xm ns:int-http="http://ww. springfranmework. org/schema/integration/http"
xsi : schemalLocat i on="
http://ww. springframework. or g/ schema/ beans
http: //wwv. spri ngfranewor k. or g/ schenma/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ i ntegration
http://ww. springframework. org/ schema/ i ntegration/spring-integration.xsd
http://ww. spri ngfranewor k. org/ schema/ i ntegration/http
http://ww. springframework. org/ schema/integration/ http/spring-integration-http.xsd">

</ beans>

Inbound

The XML Namespace provides two components for handling HTTP Inbound requests. In order to
process requests without returning a dedicated response, use the inbound-channel-adapter:

<int-http:inbound-channel -adapter id="httpChannel Adapter" channel ="requests"
support ed- net hods="PUT, DELETE"/>

To process requests that do expect a response, use an inbound-gateway:

<int-http:inbound-gateway id="i nboundGat enway"
request - channel ="r equest s"
repl y-channel ="responses"/ >

Request Mapping support

© Note

Spring Integration 3.0 is improving the REST support by introducing the
I nt egrati onRequest Mappi ngHandl er Mappi ng. The implementation relies on the
enhanced REST support provided by Spring Framework 3.1 or higher.

The parsing of the HTTP Inbound Gateway or the HTTP Inbound Channel
Adapter registers an i ntegrationRequest Mappi ngHandl er Mappi ng bean of type
I nt egr ati onRequest Mappi ngHandl er Mappi ng, in case there is none registered, yet.
This particular implementation of the Handl er Mappi ng delegates its logic to the
Request Mappi ngl nf oHandl er Mappi ng. The implementation provides similar functionality as
the one provided by the org. springfranmework.web. bi nd. annot ati on. Request Mappi ng
annotation in Spring MVC.

© Note

For more information, please see Mapping Requests With @RequestMapping.

For this purpose, Spring Integration 3.0 introduces the <request-mappi ng> sub-element.
This optional sub-element can be added to the <htt p:i nbound-channel - adapt er > and the
<ht t p: i nbound- gat eway>. It works in conjunction with the path and support ed- net hods
attributes:

Spring Integration
3.0.1.RELEASE Reference Manual 182

http://static.springsource.org/spring-integration/api/org/springframework/integration/http/inbound/IntegrationRequestMappingHandlerMapping.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/http/inbound/IntegrationRequestMappingHandlerMapping.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/web/servlet/HandlerMapping.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/web/servlet/mvc/method/RequestMappingInfoHandlerMapping.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/web/bind/annotation/RequestMapping.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-ann-requestmapping

Spring Integration

<i nbound- gat eway i d="i nboundControl | er"
request - channel ="r equest s"
repl y- channel ="r esponses"
pat h="/f oo/ {f ool d}"
support ed- net hods=" GET"
vi ew- namre="f 00’
error-code="oops" >
<r equest - mappi ng header s="User - Agent "
par ans="myPar am=my Val ue"
consunmes="appl i cati on/json"
produces="!text/plain"/>
</ i nbound- gat eway>

Based on this configuration, the namespace parser creates an instance
of the IntegrationRequestMappi ngHandl er Mapping (f none exists, vyet), a
Ht t pRequest Handl i ngCont r ol | er bean and associated with it an instance of Request Mappi ng,
which in turn, is converted to the Spring MVC Request Mappi ngl nf o.

The <r equest - mappi ng> sub-element provides the following attributes:
» headers

e params

* consumes

e produces

With the path and supported-nethods attributes of the <http:inbound-
channel - adapt er > or the <ht t p: i nbound- gat eway>, <r equest - nappi ng>
attributes translate directly into the respective options provided by the
or g. spri ngf ramewor k. web. bi nd. annot at i on. Request Mappi ng annotation in Spring MVC.

The <r equest - mappi ng> sub-element allows you to configure several Spring Integration HTTP
Inbound Endpoints to the same pat h (or even the same suppor t ed- net hods) and to provide different
downstream message flows based on incoming HTTP requests.

Alternatively, you can also declare just one HTTP Inbound Endpoint and apply routing and filtering logic
within the Spring Integration flow to achieve the same result. This allows you to get the Message into
the flow as early as possibly, e.g.:

<int-http:inbound-gateway request-channel ="htt pMet hodRout er"
support ed- net hods=" GET, DELETE"
pat h="/process/{ent|d}"
payl oad- expr essi on="#pat hVari abl es. ent1d"/ >

<int:router input-channel="httpMethodRouter" expressi on="headers. http_request Met hod" >
<i nt: mappi ng val ue="GET" channel ="inl1"/>
<i nt: mappi ng val ue="DELETE" channel ="i n2"/>

</int:router>

<int:service-activator input-channel="inl" ref="service" method="getEntity"/>

<int:service-activator input-channel="in2" ref="service" nethod="del ete"/>

For more information regarding Handler Mappings, please see:

Spring Integration
3.0.1.RELEASE Reference Manual 183

http://static.springsource.org/spring-integration/api/org/springframework/integration/http/inbound/RequestMapping.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/web/servlet/mvc/method/RequestMappingInfo.html

Spring Integration

 http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-
handlermapping

URI Template Variables and Expressions

By Using the path attribute in conjunction with the payload-expression attribute as well as the header
sub-element, you have a high degree of flexibility for mapping inbound request data.

In the following example configuration, an Inbound Channel Adapter is configured to accept requests
using the following URI: /first-name/{firstName}/last-name/{lastName}

Using the payload-expression attribute, the URI template variable {firstName} is mapped to be the
Message payload, while the {lastName} URI template variable will map to the Iname Message header.

<i nt-http:inbound-channel - adapter id="i nboundAdapt er Wt hExpr essi ons"
path="/first-nanme/ {firstName}/I ast-nane/{l ast Nane}"
channel ="r equest s"
payl oad- expr essi on="#pat hVari abl es. fi rst Name" >
<int-http: header nane="| nane" expressi on="#pat hVari abl es. | ast Nane"/ >
</int-http:inbound-channel - adapt er >

For more information about URI template variables, please see the Spring Reference Manual:

 http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-
ann-requestmapping-uri-templates

Since Spring Integration 3.0, in addition to the existing #pat hVari abl es and #r equest Par ans
variables being available in payload and header expressions, other useful variables have been added.

The entire list of available expression variables:
» #requestParams - the Mul ti Val ueMap from the Ser vl et Request par anet er Map.
» #pathVariables - the Map from URI Template placeholders and their values;

» #matrixVariables - the Map of Mul ti Val ueMap according to Spring MVC Specification. Note,
#matrixVariables require Spring MVC 3.2 or higher;

 #requestAttributes - the
org. spri ngframewor k. web. cont ext . request. Request Attri but es associated with the
current Request;

» #requestHeaders - the org. spri ngfranmework. http. Ht t pHeader s object from the current
Request;

» #cookies - the Map<String, Cookie> of javax.servlet. http. Cooki es from the current
Request.

Note, all these values (and others) can be accessed within expressions in the downstream message flow
via the ThreadLocal org. springfranework. web. cont ext.request. Request Attri butes
variable, if that message flow is single-threaded and lives within the request thread:

<int-:transformer
expressi on="T(org. springframework. web. cont ext . request. Request Cont ext Hol der) .
request Attri butes. request.queryString"/>

Spring Integration
3.0.1.RELEASE Reference Manual 184

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-handlermapping
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-handlermapping
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-ann-requestmapping-uri-templates
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-ann-requestmapping-uri-templates
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-ann-matrix-variables

Spring Integration

Outbound

To configure the outbound gateway you can use the namespace support as well. The following code
shippet shows the different configuration options for an outbound Http gateway. Most importantly, notice
that the 'http-method' and 'expected-response-type' are provided. Those are two of the most commonly
configured values. The default http-method is POST, and the default response type is null. With a null
response type, the payload of the reply Message would contain the ResponseEntity as long as it's http
status is a success (non-successful status codes will throw Exceptions). If you are expecting a different
type, such as a St r i ng, then provide that fully-qualified class name as shown below. See also the note
about empty response bodies in Section 16.3, “Http Outbound Gateway”.

© Important
Beginning with Spring Integration 2.1 the request-timeout attribute of the HTTP Outbound
Gateway was renamed to reply-timeout to better reflect the intent.

<i nt - http: out bound- gat eway i d="exanpl e"
request - channel ="r equest s"
url ="http://|ocal host/test"
ht t p- net hod=" POST"
extract -request - payl oad="f al se"
expect ed-response-type="java. |l ang. Stri ng"
char set =" UTF- 8"
request - fact ory="request Fact ory"
reply-timeout ="1234"
repl y-channel ="replies"/>

© Important

Since Spring Integration 2.2, Java serialization over HTTP is no longer enabled by default.
Previously, when setting the expect ed-response-type attribute to a Serializabl e
object, the Accept header was not properly set up. Since Spring Integration 2.2, the
SerializingHtt pMessageConvert er has now been updated to set the Accept header to
application/x-java-serialized-object.

However, because this could cause incompatibility with existing applications, it was decided
to no longer automatically add this converter to the HTTP endpoints. If you wish to use
Java serialization, you will need to add the Seri alizi ngHtt pMessageConverter to
the appropriate endpoints, using the nessage-converters attribute, when using XML
configuration, or using the set MessageConvert er s() method. Alternatively, you may wish to
consider using JSON instead which is enabled by simply having Jackson on the classpath.

Beginning with Spring Integration 2.2 you can also determine the HTTP Method dynamically using
SpEL and the http-method-expression attribute. Note that this attribute is obviously murually exclusive
with http-method You can also use expect ed-r esponse-t ype- expr essi on attribute instead of
expect ed- r esponse-t ype and provide any valid SpEL expression that determines the type of the
response.

Spring Integration
3.0.1.RELEASE Reference Manual 185

Spring Integration

<i nt-http: out bound- gat eway i d="exanpl e"
request - channel ="r equest s"
url="http://|ocal host/test"
ht t p- net hod- expr essi on="header s. htt pMet hod"
extract-request - payl oad="f al se"
expect ed-response-type- expressi on="payl oad"
char set =" UTF- 8"
request - f act ory="request Fact or y"
reply-tineout="1234"
repl y-channel ="replies"/>

If your outbound adapter is to be used in a unidirectional way, then you can use an outbound-channel-
adapter instead. This means that a successful response will simply execute without sending any
Messages to a reply channel. In the case of any non-successful response status code, it will throw an
exception. The configuration looks very similar to the gateway:

<i nt-http: out bound- channel - adapt er i d="exanpl e"
url ="http://1ocal host/exanpl e"
ht t p- net hod=" GET"
channel ="r equest s"
char set =" UTF- 8"
extract - payl oad="f al se"
expect ed-response-type="java. |l ang. Stri ng"
request - f act or y="soneRequest Fact or y"
order="3"
aut o-startup="fal se"/>

© Note

To specify the URL; you can use either the 'url’ attribute or the 'url-expression' attribute. The 'url'is
a simple string (with placedholders for URI variables, as described below); the ‘url-expression’ is
a SpEL expression, with the Message as the root object, enabling dynamic urls. The url resulting
from the expression evaluation can still have placeholders for URI variables.

In previous releases, some users used the place holders to replace the entire URL with a URI
variable. Changes in Spring 3.1 can cause some issues with escaped characters, such as '?'.
For this reason, it is recommended that if you wish to generate the URL entirely at runtime, you
use the 'url-expression' attribute.

Mapping URI Variables

If your URL contains URI variables, you can map them using the uri - vari abl e sub-element. This
sub-element is available for the Http Outbound Gateway and the Http Outbound Channel Adapter.

<i nt-http:out bound-gateway id="trafficGateway"
url ="http://1ocal.yahooapis.comtrafficData?appi d=YdnDeno&anp; zi p={ zi pCode}"
request - channel ="traf fi cChannel "
ht t p- net hod=" GeT"
expect ed-response-type="java. |l ang. Stri ng">
<int-http:uri-variabl e nanme="zi pCode" expressi on="payl oad. getZip()"/>
</int-http: out bound- gat eway>

The uri - vari abl e sub-element defines two attributes: name and expr essi on. The nane attribute
identifies the name of the URI variable, while the expr essi on attribute is used to set the actual value.
Using the expr essi on attribute, you can leverage the full power of the Spring Expression Language
(SpEL) which gives you full dynamic access to the message payload and the message headers. For

Spring Integration
3.0.1.RELEASE Reference Manual 186

Spring Integration

example, in the above configuration the get Zi p() method will be invoked on the payload object of the
Message and the result of that method will be used as the value for the URI variable named 'zipCode'.

Since Spring Integration 3.0, HTTP Outbound Endpoints support the uri - vari abl es- expressi on
attribute to specify an Expr essi on which should be evaluated, resulting in a Map for all URI variable
placeholders within the URL template. It provides a mechanism whereby different variable expressions
can be used, based on the outbound message. This attribute is mutually exclusive with the <uri -
vari abl e/ > sub-element:

<i nt-http: out bound- gat eway
url ="http://foo. host/{foo}/bars/{bar}"
request - channel ="traf fi cChannel "
ht t p- net hod=" GeT"
uri-vari abl es- expressi on="@uri Vari abl esBean. popul at e(payl oad) "
expect ed-response-type="java.l ang. String"/>

where uri Var i abl esBean might be:

public class Uri Vari abl esBean {
private static final ExpressionParser EXPRESSI ON PARSER = new Spel Expressi onParser();

public Map<String, ?> popul ate(Cbject payl oad) {
Map<String, Object> variables = new HashMap<String, Object>();
if (payload instanceOf String.class)) {

vari abl es. put ("foo", "foo"));

}

el se {
vari abl es. put ("foo0", EXPRESSI ON_PARSER. par seExpr essi on("headers. bar"));

}

return vari abl es;

}
}
© Note

The uri - vari abl es- expr essi on must evaluate to a Map. The values of the Map must be
instances of Stri ng or Expr essi on. This Map is provided to an Expr essi onEval Map for
further resolution of URI variable placeholders using those expressions in the context of the
outbound Message.

Controlling URI Encoding

By default, the URL string is encoded (see UriComponentsBuilder) to the URI object before sending
the request. In some scenarios with a non-standard URI (e.g. the RabbitMQ Rest API) it is undesirable
to perform the encoding. The <htt p: out bound- gat eway/ > and <htt p: out bound- channel -
adapt er/ > provide an encode- uri attribute. To disable encoding the URL, this attribute should be
settof al se (by defaultitist r ue). If you wish to partially encode some of the URL, this can be achieved
using an expr essi on within a <uri - vari abl e/ >:

<ht t p: out bound- gat eway url ="http://sonehost/%2f/fooApps?bar={parant" encode-uri="fal se">
<http:uri-variabl e nane="par ant
expressi on="T(org. apache. cormons. httpclient.util.UR Util)
.encodeW t hi nQuery(' Hel ow World!")"/>
</ htt p: out bound- gat eway>

Spring Integration
3.0.1.RELEASE Reference Manual 187

http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/web/util/UriComponentsBuilder.html

Spring Integration

16.5 Timeout Handling

In the context of HTTP components, there are two timing areas that have to be considered.
» Timeouts when interacting with Spring Integration Channels
» Timeouts when interacting with a remote HTTP server

First, the components interact with Message Channels, for which timeouts can be specified. For
example, an HTTP Inbound Gateway will forward messages received from connected HTTP Clients to a
Message Channel (Request Timeout) and consequently the HTTP Inbound Gateway will receive a reply
Message from the Reply Channel (Reply Timeout) that will be used to generate the HTTP Response.
Please see the figure below for an illustration.

| Request Timeout ‘

N | —

/ \
Request Channel
*r—
\

HTTP Inbound Service Activator

| Reply Timeout ‘

Reply Channel

How timeout settings apply to an HTTP Inbound Gateway

For outbound endpoints, the second thing to consider is timing while interacting with the remote server.

java.net.URLConnection
connectTimeout
, readTimeout
Message | | ummm— \q
Request Channel | —
Gateway
Reply Channel ‘ Reply Timeout

How timeout settings apply to an HTTP Outbound Gateway

You may want to configure the HTTP related timeout behavior, when making active HTTP requests
using the HTTP Oubound Gateway or the HTTP Outbound Channel Adapter. In those instances, these
two components use Spring's Rest Tenpl at e support to execute HTTP requests.

In order to configure timeouts for the HTTP Oubound Gateway and the HTTP Outbound Channel
Adapter, you can either reference a Rest Tenpl at e bean directly, using the rest-template attribute, or

Spring Integration
3.0.1.RELEASE Reference Manual 188

http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/web/client/RestTemplate.html

Spring Integration

you can provide a reference to a ClientHttpRequestFactory bean using the request-factory attribute.
Spring provides the following implementations of the Cl i ent Ht t pRequest Fact or y interface:

Si npl ed i ent Ht t pRequest Fact ory - Uses standard J2SE facilities for making HTTP Requests

Ht t pConponent sCl i ent Ht t pRequest Fact ory - Uses Apache HttpComponents HttpClient (Since
Spring 3.1)

CientHt t pRequest Fact ory - Uses Jakarta Commons HttpClient (Deprecated as of Spring 3.1)

If you don't explicitly configure the request-factory or rest-template attribute respectively, then a default
RestTemplate which uses a Si npl eCl i ent Ht t pRequest Fact or y will be instantiated.

© Note

With some JVM implementations, the handling of timeouts using the URLConnection class may
not be consistent.

E.g. from the Java™ Platform, Standard Edition 6 API Specification on setConnectTimeout:
“Some non-standard implmentation of this method may ignore the specified timeout. To see the
connect timeout set, please call getConnectTimeout().”

Please test your timeouts if you have specific needs. Consider using
the HttpComponentsd ientHttpRequest Factory which, in turn, uses Apache
HttpComponents HttpClient instead.

© Important

When using the Apache HttpComponents HttpClient with a Pooling Connection Manager, be
aware that, by default, the connection manager will create no more than 2 concurrent connections
per given route and no more than 20 connections in total. For many real-world applications these
limits may prove too constraining. Refer to the Apache documentation (link above) for information
about configuring this important component.

Here is an example of how to configure an HTTP Outbound Gateway using a
Si npl ed i ent Ht t pRequest Fact ory, configured with connect and read timeouts of 5 seconds
respectively:

<int-http:out bound-gateway url="http://ww. googl e. conii g/ api ?weat her ={city}"
ht t p- net hod="GET"
expect ed-response-type="java. |l ang. Stri ng"
request - f act ory="request Fact ory"
request - channel ="r equest Channel "
repl y- channel ="r epl yChannel ">
<int-http:uri-variable nane="city" expressi on="payl oad"/>
</int-http: out bound- gat eway>

<bean i d="request Fact ory"
cl ass="org. springframework. http.client.SinpleCientHtpRequestFactory">
<property nane="connect Ti meout" val ue="5000"/>
<property nane="readTi meout" val ue="5000"/ >
</ bean>

HTTP Outbound Gateway

For the HTTP Outbound Gateway, the XML Schema defines only the
reply-timeout. The reply-timeout maps to the sendTimeout property of the

Spring Integration
3.0.1.RELEASE Reference Manual 189

http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/http/client/ClientHttpRequestFactory.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/http/client/SimpleClientHttpRequestFactory.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/http/client/HttpComponentsClientHttpRequestFactory.html
http://hc.apache.org/httpcomponents-client-ga/
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/http/client/CommonsClientHttpRequestFactory.html
http://hc.apache.org/httpclient-3.x/
http://hc.apache.org/httpcomponents-client-ga/
http://hc.apache.org/httpcomponents-client-ga/

Spring Integration

org.springframework.integration.http.outbound.HttpRequestExecutingMessageHandler class. More
precisely, the property is set on the extended Abst r act Repl yPr oduci ngMessageHandl er class,
which ultimatelly sets the property on the MessagingTemplate.

The value of the sendTimeout property defaults to "-1" and will be applied to the connected
MessageChannel . This means, that depending on the implementation, the Message Channel's send
method may block indefinitely. Furthermore, the sendTimeout property is only used, when the actual
MessageChannel implementation has a blocking send (such as 'full' bounded QueueChannel).

HTTP Inbound Gateway

For the HTTP Inbound Gateway, the XML Schema defines the request-timeout attribute, which will be
used to set the requestTimeout property on the Ht t pRequest Handl i ngMessagi ngGat eway class
(on the extended MessagingGatewaySupport class). Secondly, the reply-timeout attribute exists and it
maps to the replyTimeout property on the same class.

The default for both timeout properties is "1000ms". Ultimately, the request-timeout property will be used
to set the sendTimeout on the used Messagi ngTenpl at e instance. The replyTimeout property on the
other hand, will be used to set the receiveTimeout property on the used Messagi ngTenpl at e instance.

Q@ Tip
In order to simulate connection timeouts, connect to a non-routable IP address, for example
10.255.255.10.

16.6 HTTP Proxy configuration

If you are behind a proxy and need to configure proxy settings for HTTP outbound adapters and/or
gateways, you can apply one of two approaches. In most cases, you can rely on the standard Java
System Properties that control the proxy settings. Otherwise, you can explicitly configure a Spring bean
for the HTTP client request factory instance.

Standard Java Proxy configuration

There are 3 System Properties you can set to configure the proxy settings that will be used by the HTTP
protocol handler:

 http.proxyHost - the host name of the proxy server.
* http.proxyPort - the port number, the default value being 80.

« http.nonProxyHosts - a list of hosts that should be reached directly, bypassing the proxy. This is a list
of patterns separated by '|'. The patterns may start or end with a "' for wildcards. Any host matching
one of these patterns will be reached through a direct connection instead of through a proxy.

And for HTTPS:

* https.proxyHost - the host name of the proxy server.

* https.proxyPort - the port number, the default value being 80.
For more information please refer to this document: http://download.oracle.com/javase/6/docs/
technotes/guides/net/proxies.html

Spring's SimpleClientHttpRequestFactory

Spring Integration
3.0.1.RELEASE Reference Manual 190

Spring Integration

If for any reason, you need more explicit control over the proxy configuration, you can use Spring's
Si mpl ed i ent Ht t pRequest Fact or y and configure its 'proxy' property as such:

<bean i d="request Fact ory"
cl ass="org. springframework. http.client.SinpleCdientHtpRequest Factory">
<property nanme="proxy">
<bean id="proxy" class="java.net.Proxy">
<const ruct or - ar g>
<util:constant static-field="java.net.Proxy. Type. HTTP"/>
</ const ruct or - ar g>
<const ruct or - ar g>
<bean cl ass="j ava. net. | net Socket Addr ess" >
<constructor-arg val ue="123.0.0.1"/>
<constructor-arg val ue="8080"/>
</ bean>
</ const ructor - ar g>
</ bean>
</ property>
</ bean>

16.7 HTTP Header Mappings

Spring Integration provides support for Http Header mapping for both HTTP Request and HTTP
Responses.

By default all standard Http Headers as defined here http://en.wikipedia.org/wiki/
List_ of HTTP_header_fields will be mapped from the message to HTTP request/response headers
without further configuration. However if you do need further customization you may provide additional
configuration via convenient namespace support. You can provide a comma-separated list of header
names, and you can also include simple patterns with the *' character acting as a wildcard. If you do
provide such values, it will override the default behavior. Basically, it assumes you are in complete
control at that point. However, if you do want to include all of the standard HTTP headers, you can
use the shortcut patterns: HTTP_REQUEST_HEADERS and HTTP_RESPONSE_HEADERS. Here are
some examples:

<i nt - htt p: out bound- gat eway i d="htt pGat eway"
url ="http://1ocal host/test2"
nmapped- r equest - header s="f oo, bar"
mapped- r esponse- header s="X-*, HTTP_RESPONSE HEADERS"
channel =" someChannel "/ >

<i nt - htt p: out bound- channel - adapt er i d="htt pAdapter"
url ="http://1ocal host/test2"
mapped- r equest - header s="f oo, bar, HITP_REQUEST_ HEADERS"
channel =" someChannel "/ >

The adapters and gateways will use the Def aul t Ht t pHeader Mapper which now provides two static
factory methods for "inbound" and "outbound" adapters so that the proper direction can be applied
(mapping HTTP requests/responses IN/OUT as appropriate).

If further customization is required you can also configure a Defaul t Htt pHeader Mapper
independently and inject it into the adapter via the header - mapper attribute.

Spring Integration
3.0.1.RELEASE Reference Manual 191

Spring Integration

<i nt-http: out bound-gat eway i d="htt pGateway"
url="http://|ocal host/test2"
header - mapper =" header Mapper "
channel =" someChannel "/ >

<bean i d="header Mapper" class="0.s.i.http.support.Defaul tHttpHeader Mapper" >
<property nane="i nboundHeader Nanes" val ue="foo*, *bar, baz"/>
<property nane="out boundHeader Nanes" val ue="a*h, d"/>

</ bean>

Of course, you can even implement the HeaderMapper strategy interface directly and provide a
reference to that if you need to do something other than what the Def aul t Ht t pHeader Mapper
supports.

16.8 HTTP Samples

Multipart HTTP request - RestTemplate (client) and Http Inbound Gateway
(server)

This example demonstrates how simple itis to send a Multipart HTTP request via Spring's RestTemplate
and receive it with a Spring Integration HTTP Inbound Adapter. All we are doing is creating a
Mul ti Val ueMap and populating it with multi-part data. The Rest Tenpl at e will take care of the rest
(no pun intended) by converting it to a Mul ti part Ht t pSer vl et Request . This particular client will
send a multipart HTTP Request which contains the name of the company as well as an image file with
the company logo.

Rest Tenpl ate tenpl ate = new Rest Tenpl ate();
String uri = "http://1ocal host: 8080/ nultipart-http/inboundAdapter. htnt;
Resource s2logo =
new Cl assPat hResour ce("or g/ spri ngfranmewor k/ sanpl es/ nul ti part/spring09_I ogo. png");
Mul ti Val ueMap map = new Li nkedMul ti Val ueMap() ;
map. add(" conpany", "SpringSource");
map. add(" conpany- | ogo", s2l 0go);
Ht t pHeader s headers = new Htt pHeaders();
header s. set Cont ent Type(new Medi aType("nultipart”, "formdata"));
HtpEntity request = new HttpEntity(nap, headers);
ResponseEntity<?> httpResponse = tenpl ate. exchange(uri, HttpMethod. POST, request, null);

That is all for the client.

On the server side we have the following configuration:

<i nt-http:inbound-channel - adapt er id="httpl nboundAdapter"
channel ="r ecei veChannel "
nane="/i nboundAdapt er . ht nt
support ed- net hods="GET, POST"/>

<i nt:channel id="receiveChannel"/>
<int:service-activator input-channel="recei veChannel ">
<bean cl ass="org. spri ngfranework.integration.sanples.nultipart.MltipartReceiver"/>

</int:service-activator>

<bean id="nul ti part Resol ver"
cl ass="org. spri ngframewor k. web. mul ti part.conmmons. ConmonsMuil ti part Resol ver"/>

Spring Integration
3.0.1.RELEASE Reference Manual 192

Spring Integration

The ‘httpInboundAdapter' will receive the request, convert it to a Message with a payload that is
a Li nkedMul ti Val ueMap. We then are parsing that in the 'multipartReceiver' service-activator;

public void receive(Li nkedMul ti Val ueMap<String, Object> nultipartRequest){
System out. printl n("### Successfully received nultipart request ###");
for (String elenmentNane : nultipart Request. keySet ()) {
i f (el ement Nanme. equal s("conpany")){
Systemout.println("\t" + el ementName + " - " +
((String[]) nultipartRequest.getFirst("company"))[0]);

}
el se if (el ement Nane. equal s("conpany-1|0go")){
Systemout.printIn("\t" + elenentNane + " - as UploadedMultipartFile: " +
((Upl oadedMul tipartFile) nultipartRequest
.get First("conpany-|ogo")).getOiginal Fil enane());
}

You should see the following output:

Successful ly received nul tipart request
conpany - SpringSource
conpany-l ogo - as Upl oadedMul ti partFile: spring09 | ogo.png

Spring Integration
3.0.1.RELEASE Reference Manual 193

Spring Integration

17. JDBC Support

Spring Integration provides Channel Adapters for receiving and sending messages via database
queries. Through those adapters Spring Integration supports not only plain JDBC SQL Queries, but also
Stored Procedure and Stored Function calls.

The following JDBC components are available by default:

* Inbound Channel Adapter

e Outbound Channel Adapter

e Qutbound Gateway

» Stored Procedure Inbound Channel Adapter

» Stored Procedure Outbound Channel Adapter

» Stored Procedure Outbound Gateway

Furthermore, the Spring Integration JDBC Module also provides a JDBC Message Store

17.1 Inbound Channel Adapter

The main function of an inbound Channel Adapter is to execute a SQL SELECT query and turn the result
set as a message. The message payload is the whole result set, expressed as a Li st , and the types of
the items in the list depend on the row-mapping strategy that is used. The default strategy is a generic
mapper that just returns a Map for each row in the query result. Optionally, this can be changed by
adding a reference to a Rowiapper instance (see the Spring JDBC documentation for more detailed
information about row mapping).

© Note

If you want to convert rows in the SELECT query result to individual messages you can use a
downstream splitter.

The inbound adapter also requires a reference to either a JdbcTenpl at e instance or a Dat aSour ce.

As well as the SELECT statement to generate the messages, the adapter above also has an UPDATE
statement that is being used to mark the records as processed so that they don't show up in the next
poll. The update can be parameterized by the list of ids from the original select. This is done through a
naming convention by default (a column in the input result set called "id" is translated into a list in the
parameter map for the update called "id"). The following example defines an inbound Channel Adapter
with an update query and a Dat aSour ce reference.

<i nt-jdbc:inbound-channel - adapter query="select * fromitem where status=2"
channel ="target" dat a- source="dat aSour ce"
updat e="update item set status=10 where id in (:id)" />

© Note

The parameters in the update query are specified with a colon (:) prefix to the name of a parameter
(which in this case is an expression to be applied to each of the rows in the polled result set).
This is a standard feature of the named parameter JDBC support in Spring JDBC combined with

Spring Integration
3.0.1.RELEASE Reference Manual 194

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/jdbc.html

Spring Integration

a convention (projection onto the polled result list) adopted in Spring Integration. The underlying
Spring JDBC features limit the available expressions (e.g. most special characters other than
period are disallowed), but since the target is usually a list of or an individual object addressable
by simple bean paths this isn't unduly restrictive.

To change the parameter generation strategy you can inject a Sql Par anet er Sour ceFact ory into
the adapter to override the default behavior (the adapter has a sql - par anet er - sour ce-f actory
attribute).

Polling and Transactions

The inbound adapter accepts a regular Spring Integration poller as a sub element, so for instance the
frequency of the polling can be controlled. A very important feature of the poller for JIDBC usage is the
option to wrap the poll operation in a transaction, for example:

<i nt-jdbc:inbound-channel - adapter query="..."
channel ="t arget" dat a- source="dat aSource" update="...">
<int:poller fixed-rate="1000">
<int:transactional/>
</int:poller>
</int-jdbc:inbound-channel - adapt er >

© Note

If a poller is not explicitly specified, a default value will be used (and as per normal with Spring
Integration can be defined as a top level bean).

In this example the database is polled every 1000 milliseconds, and the update and select queries are
both executed in the same transaction. The transaction manager configuration is not shown, but as long
as itis aware of the data source then the poll is transactional. A common use case is for the downstream
channels to be direct channels (the default), so that the endpoints are invoked in the same thread, and
hence the same transaction. Then if any of them fail, the transaction rolls back and the input data is
reverted to its original state.

Max-rows-per-poll versus Max-messages-per-poll

The JDBC Inbound Channel Adapter defines an attribute max-rows-per-poll. When you specify the
adapter's Poller, you can also define a property called max-messages-per-poll. While these two
attributes look similar, their meaning is quite different.

max-messages-per-poll specifies the number of times the query is executed per polling interval, whereas
max-rows-per-poll specifies the number of rows returned for each execution.

Under normal circumstances, you would likely not want to set the Poller's max-messages-per-poll
property when using the JDBC Inbound Channel Adapter. Its default value is 1, which means that the
JDBC Inbound Channel Adapter's receive() method is executed exactly once for each poll interval.

Setting the max-messages-per-poll attribute to a larger value means that the query is executed that
many times back to back. For more information regarding the max-messages-per-poll attribute, please
see the section called “Configuring An Inbound Channel Adapter”.

In contrast, the max-rows-per-poll attribute, if greater than 0, specifies the maximum number of rows
that will be used from the query result set, per execution of the receive() method. If the attribute is set to
0, then all rows will be included in the resulting message. If not explicitly set, the attribute defaults to 0.

Spring Integration
3.0.1.RELEASE Reference Manual 195

http://static.springsource.org/spring-integration/api/org/springframework/integration/jdbc/JdbcPollingChannelAdapter.html#receive()

Spring Integration

17.2 Outbound Channel Adapter

The outbound Channel Adapter is the inverse of the inbound: its role is to handle a message and use it to
execute a SQL query. The message payload and headers are available by default as input parameters
to the query, for instance:

<i nt-j dbc: out bound- channel - adapt er
query="insert into foos (id, status, nanme) values (:headers[id], O, :payload[foo])"
dat a- sour ce="dat aSour ce"
channel ="i nput"/>

In the example above, messages arriving on the channel labelled input have a payload of a map with key
foo, so the [] operator dereferences that value from the map. The headers are also accessed as a map.

© Note

The parameters in the query above are bean property expressions on the incoming message
(not Spring EL expressions). This behavior is part of the Sql Par armet er Sour ce which is the
default source created by the outbound adapter. Other behavior is possible in the adapter, and
requires the user to inject a different Sql Par anet er Sour ceFact ory.

The outbound adapter requires a reference to either a Dat aSour ce or a JdbcTenpl at e. It can also
have a Sql Par anet er Sour ceFact or y injected to control the binding of each incoming message to
a query.

If the input channel is a direct channel, then the outbound adapter runs its query in the same thread,
and therefore the same transaction (if there is one) as the sender of the message.

Passing Parameters using SpEL Expressions

A common requirement for most JDBC Channel Adapters is to pass parameters as part of Sql queries
or Stored Procedures/Functions. As mentioned above, these parameters are by default bean property
expressions, not SpEL expressions. However, if you need to pass SpEL expression as parameters, you
must inject a Sql Par anet er Sour ceFact or y explicitly.

The following example uses a Expr essi onEval uat i ngSql Par anet er Sour ceFact or y to achieve
that requirement.

<j dbc: out bound- channel - adapt er dat a- sour ce="dat aSour ce" channel ="i nput "
query="insert into MESSAGES (MESSAGE | D, PAYLOAD, CREATED DATE) \
values (:id, :payload, :createdDate)"
sql - par anet er - sour ce- f act or y="spel Source"/ >

<bean i d="spel Sour ce"
class="o.s.integration.jdbc. Expressi onEval uati ngSql Par anet er Sour ceFact ory" >
<property nane="paraneter Expressi ons">

<map>
<entry key="id" val ue="headers['id"].toString()"/>
<entry key="createdDate" value="new java.util.Date()"/>
<entry key="payl oad" val ue="payl oad"/ >
</ map>
</ property>

</ bean>

For further information, please also see the section called “Defining Parameter Sources”

Spring Integration
3.0.1.RELEASE Reference Manual 196

Spring Integration

17.3 Outbound Gateway

The outbound Gateway is like a combination of the outbound and inbound adapters: its role is to handle
a message and use it to execute a SQL query and then respond with the result sending it to a reply
channel. The message payload and headers are available by default as input parameters to the query,
for instance:

<i nt-j dbc: out bound- gat eway
update="insert into foos (id, status, nane) values (:headers[id], O, :payload[foo])"
request - channel ="i nput" reply-channel ="out put" dat a-source="dat aSource" />

The result of the above would be to insert a record into the "foos" table and return a message to the
output channel indicating the number of rows affected (the payload is a map: { UPDATED=1}).

If the update query is an insert with auto-generated keys, the reply message can be populated with the
generated keys by adding keys- gener at ed="t rue" to the above example (this is not the default
because it is not supported by some database platforms). For example:

<i nt -j dbc: out bound- gat eway
update="insert into foos (status, nane) values (0, :payload[foo])"
request - channel ="i nput" reply-channel ="out put" dat a-source="dat aSour ce"
keys- gener at ed="true"/ >

Instead of the update count or the generated keys, you can also provide a select query to execute and
generate a reply message from the result (like the inbound adapter), e.g:

<i nt -j dbc: out bound- gat eway
update="insert into foos (id, status, nanme) values (:headers[id], O, :payload[foo])"
query="sel ect * fromfoos where id=: headers[$id]"
request - channel ="i nput" reply-channel ="out put" dat a- source="dat aSource"/ >

Since Spring Integration 2.2 the update SQL query is no longer mandatory. You can now solely provide
a select query, using either the query attribute or the query sub-element. This is extremely useful if you
need to actively retrieve data using e.g. a generic Gateway or a Payload Enricher. The reply message
is then generated from the result, like the inbound adapter, and passed to the reply channel.

<i nt - j dbc: out bound- gat eway
query="select * from foos where id=: headers[id]"
request - channel ="i nput "
repl y- channel =" out put "
dat a- sour ce="dat aSour ce"/ >

As with the channel adapters, there is also the option to provide Sql Par anet er Sour ceFact ory
instances for request and reply. The default is the same as for the outbound adapter, so the request
message is available as the root of an expression. If keys-generated="true" then the root of the
expression is the generated keys (a map if there is only one or a list of maps if multi-valued).

The outbound gateway requires a reference to either a DataSource or a JdbcTemplate. It can also have a
Sql Par anet er Sour ceFact or y injected to control the binding of the incoming message to the query.

17.4 JDBC Message Store

Spring Integration provides 2 JDBC specifc Message Store implementations. The first one, is the
JdbcMessagesSt or e which is suitable to be used in conjunction with Aggregators and the Claimcheck

Spring Integration
3.0.1.RELEASE Reference Manual 197

Spring Integration

pattern. While it can be used for backing Message Channels as well, you may want to consider using
the JdbcChannel MessageSt or e implementation instead, as it provides a more targeted and scalable
implementation.

The Generic JDBC Message Store

The JDBC module provides an implementation of the Spring Integration MessageSt or e (important in
the Claim Check pattern) and MessageG oupSt or e (important in stateful patterns like Aggregator)
backed by a database. Both interfaces are implemented by the JdbcMessageSt or e, and there is also
support for configuring store instances in XML. For example:

<int-jdbc: nessage-store id="nmessageStore" data-source="dat aSource"/>

A JdbcTenpl at e can be specified instead of a Dat aSour ce.

Other optional attributes are show in the next example:

<int-jdbc: nessage-store id="nmessageStore" data-source="dataSource"
| ob- handl er="1 obHandl er" tabl e-prefix="MY_INT_"/>

Here we have specified a LobHandl er for dealing with messages as large objects (e.g. often necessary
if using Oracle) and a prefix for the table names in the queries generated by the store. The table name
prefix defaults to "INT_".

© Note

If you plan on using MySQL, please use MySQL version 5.6.4 or higher, if possible. Prior versions
do not support fractional seconds for temporal data types. Because of that, messages may not
arrive in the precise FIFO order when polling from such a MySQL Message Store.

Therefore, starting with Spring Integration 3.0, we provide an additional set of DDL scripts for
MySQL version 5.6.4 or higher:

» schema-drop-mysql-5_6_4.sql
« schema-mysql-5 6 _4.sql
For more information, please see:

http://dev.mysgl.com/doc/refman/5.6/en/fractional-seconds.html

Also important, please ensure that you use an up-to-date version of the JDBC driver for MySQL
(Connector/J), e.g. version 5.1.24 or higher.

Backing Message Channels

If you intent backing Message Channels using JDBC, it is recommended to use the provided
JdbcChannel MessageSt or e implementation instead. It can only be used in conjuntion with Message
Channels.

© Note

The provided JdbcChannel MessageSt ore implementation is available since Spring
Integration 2.2..

Spring Integration
3.0.1.RELEASE Reference Manual 198

http://dev.mysql.com/doc/refman/5.6/en/fractional-seconds.html

Spring Integration

Supported Database

The JdbcChannel MessageSt or e uses database specific SQL queries to retrieve messages from
the database. Therefore, users must set the Channel MessageSt or eQuer yPr ovi der property on
the JdbcChannel MessagesSt or e. This channel MessageSt or eQuer yPr ovi der provides the SQL
gueries and Spring Integration provides support for the following relational databases:

PostgreSQL

HSQLDB
« MySQL
* Oracle
» Derby

If your database is not listed, you can easily extend the
Abst ract Channel MessageSt or eQuer yPr ovi der class and provide your own custom queries.

© Important

Generally it is not recommened to use a relational database for the purpose of queuing. Instead,
if possible, consider using either JIMS or AMQP, for which message store implementation are
provided as well. For further reference please see the following resources:

» 5 subtle ways you're using MySQL as a queue, and why it'll bite you

» The Database As Queue Anti-Pattern

Concurrent Polling

When polling a Message Channel, you have the option to configure the associated Pol | er with a
TaskExecut or reference.

© Important

Keep in mind, though, that if you use a JDBC backed Message Channel and you are planning on
polling the channel and consequently the message store transactionally with multiple threads,
you should ensure that you use a relational database that supports Multiversion Concurrency
Control (MVCC). Otherwise, locking may be an issue and the performance, when using multiple
threads, may not materialize as expected. For example Apache Derby is problematic in that
regard.

To achieve better JDBC queue throughput, and avoid issues when different threads may poll
the same Message from the queue, it is important to set the usi ngl dCache property of
JdbcChannel MessageSt or e to t r ue when using databases that do not support MVCC:

Spring Integration
3.0.1.RELEASE Reference Manual 199

https://www.engineyard.com/blog/2011/5-subtle-ways-youre-using-mysql-as-a-queue-and-why-itll-bite-you/
http://mikehadlow.blogspot.com/2012/04/database-as-queue-anti-pattern.html
http://en.wikipedia.org/wiki/Multiversion_concurrency_control
http://en.wikipedia.org/wiki/Multiversion_concurrency_control

Spring Integration

<bean i d="queryProvider"
class="o0.s.i.]jdbc.store. channel . Post gr esChannel MessageSt or eQuer yProvi der"/ >

<int:transaction-synchroni zati on-factory id="syncFactory">
<int:after-conmt expression="@tore.renpveFromn dCache(headers.id.toString())" />
<int:after-rollback expressi on="@tore.renoveFrom dCache(headers.id.toString())"/>
</int:transaction-synchroni zation-factory>

<t ask: execut or id="pool" pool -size="10"
queue- capaci ty="10" rejection-policy="CALLER RUNS* />

<bean i d="store" class="0.s.i.]jdbc.store.JdbcChannel MessageSt ore" >
<property nane="dat aSource" ref="dataSource"/>
<property nane="channel MessageSt or eQueryProvi der" ref="queryProvider"/>
<property nane="regi on" val ue="TX_ TI MEQUT"/ >
<property nane="usi ngl dCache" val ue="true"/>

</ bean>

<i nt:channel id="inputChannel">
<i nt:queue nessage-store="store"/>
</'int:channel >

<int:bridge input-channel ="input Channel " out put - channel =" out put Channel ">
<int:poller fixed-delay="500" receive-tinmeout="500"
max- nessages- per - pol | =" 1" t ask- execut or =" pool ">
<int:transactional propagation="REQU RED' synchroni zati on-factory="syncFactory"
i sol ati on="READ _COWM TTED" transacti on-manager ="transacti onManager" />
</int:poller>

</int:bridge>

<i nt:channel id="outputChannel" />

Initializing the Database

Spring Integration ships with some sample scripts that can be used to initialize a database. In the spring-
integration-jdbc JAR file you will find scripts in the or g. spri ngf r amewor k. i nt egr ati on. j dbc and
in the or g. spri ngframewor k. i ntegration.jdbc. store.channel package: there is a create
and a drop script example for a range of common database platforms. A common way to use these
scripts is to reference them in a Spring JDBC data source initializer. Note that the scripts are provided
as samples or specifications of the the required table and column names. You may find that you need
to enhance them for production use (e.g. with index declarations).

Partitioning a Message Store

It is common to use a JdbcMessageSt or e as a global store for a group of applications, or nodes in
the same application. To provide some protection against name clashes, and to give control over the
database meta-data configuration, the message store allows the tables to be partitioned in two ways.
One is to use separate table names, by changing the prefix as described above, and the other is to
specify a "region" name for partitioning data within a single table. An important use case for this is when
the MessageStore is managing persistent que